dwb2023's picture
add ssr_mode = False
4ac6a1b verified
import os
import json
import time
from datetime import datetime
from pathlib import Path
import tempfile
import pandas as pd
import gradio as gr
import yt_dlp as youtube_dl
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
import torch
from datasets import load_dataset, Dataset, DatasetDict
import spaces
# Constants
MODEL_NAME = "openai/whisper-large-v3-turbo"
BATCH_SIZE = 8 # Optimized for better GPU utilization
YT_LENGTH_LIMIT_S = 10800 # 3 hours
DATASET_NAME = "dwb2023/yt-transcripts-v3"
FILE_LIMIT_MB = 1000
# Environment setup
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
device = 0 if torch.cuda.is_available() else "cpu"
# Pipeline setup
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device=device,
)
def reset_and_update_dataset(new_data):
"""
Resets and updates the dataset with new transcription data.
Args:
new_data (dict): Dictionary containing the new data to be added to the dataset.
"""
schema = {
"url": pd.Series(dtype="str"),
"transcription": pd.Series(dtype="str"),
"title": pd.Series(dtype="str"),
"duration": pd.Series(dtype="int"),
"uploader": pd.Series(dtype="str"),
"upload_date": pd.Series(dtype="datetime64[ns]"),
"description": pd.Series(dtype="str"),
"datetime": pd.Series(dtype="datetime64[ns]")
}
df = pd.DataFrame(schema)
df = pd.concat([df, pd.DataFrame([new_data])], ignore_index=True)
updated_dataset = Dataset.from_pandas(df)
dataset_dict = DatasetDict({"train": updated_dataset})
dataset_dict.push_to_hub(DATASET_NAME)
print("Dataset reset and updated successfully!")
def download_yt_audio(yt_url, filename):
"""
Downloads audio from a YouTube video using yt_dlp.
Args:
yt_url (str): URL of the YouTube video.
filename (str): Path to save the downloaded audio.
Returns:
dict: Information about the YouTube video.
"""
info_loader = youtube_dl.YoutubeDL()
try:
info = info_loader.extract_info(yt_url, download=False)
except youtube_dl.utils.DownloadError as err:
raise gr.Error(str(err))
file_length = info["duration"]
if file_length > YT_LENGTH_LIMIT_S:
yt_length_limit_hms = time.strftime("%H:%M:%S", time.gmtime(YT_LENGTH_LIMIT_S))
file_length_hms = time.strftime("%H:%M:%S", time.gmtime(file_length))
raise gr.Error(
f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video."
)
ydl_opts = {"outtmpl": filename, "format": "bestaudio/best"}
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
ydl.download([yt_url])
return info
@spaces.GPU(duration=120)
def yt_transcribe(yt_url, task):
"""
Transcribes a YouTube video and saves the transcription if it doesn't already exist.
Args:
yt_url (str): URL of the YouTube video.
task (str): Task to perform - "transcribe" or "translate".
Returns:
str: The transcription of the video.
"""
dataset = load_dataset(DATASET_NAME, split="train")
for row in dataset:
if row['url'] == yt_url:
return row['transcription']
with tempfile.TemporaryDirectory() as tmpdirname:
filepath = os.path.join(tmpdirname, "video.mp4")
info = download_yt_audio(yt_url, filepath)
with open(filepath, "rb") as f:
video_data = f.read()
inputs = ffmpeg_read(video_data, pipe.feature_extractor.sampling_rate)
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
text = pipe(
inputs,
batch_size=BATCH_SIZE,
generate_kwargs={"task": task},
return_timestamps=True,
)["text"]
save_transcription(yt_url, text, info)
return text
def save_transcription(yt_url, transcription, info):
"""
Saves the transcription data to the dataset.
Args:
yt_url (str): URL of the YouTube video.
transcription (str): The transcribed text.
info (dict): Additional information about the video.
"""
data = {
"url": yt_url,
"transcription": transcription,
"title": info.get("title", "N/A"),
"duration": info.get("duration", 0),
"uploader": info.get("uploader", "N/A"),
"upload_date": info.get("upload_date", "N/A"),
"description": info.get("description", "N/A"),
"datetime": datetime.now().isoformat()
}
dataset = load_dataset(DATASET_NAME, split="train")
df = dataset.to_pandas()
df = pd.concat([df, pd.DataFrame([data])], ignore_index=True)
updated_dataset = Dataset.from_pandas(df)
dataset_dict = DatasetDict({"train": updated_dataset})
dataset_dict.push_to_hub(DATASET_NAME)
@spaces.GPU
def transcribe(inputs, task):
"""
Transcribes an audio input.
Args:
inputs (str): Path to the audio file.
task (str): Task to perform - "transcribe" or "translate".
Returns:
str: The transcription of the audio.
"""
if inputs is None:
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
return text
# Gradio App Setup
demo = gr.Blocks()
# YouTube Transcribe Tab
yt_transcribe_interface = gr.Interface(
fn=yt_transcribe,
inputs=[
gr.Textbox(
lines=1,
placeholder="Paste the URL to a YouTube video here",
label="YouTube URL",
),
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
],
outputs="text",
title="YouTube Transcription",
description=(
f"Transcribe and archive YouTube videos using the {MODEL_NAME} model. "
"The transcriptions are saved for future reference, so repeated requests are faster!"
),
allow_flagging="never",
)
# Microphone Transcribe Tab
mf_transcribe_interface = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(sources="microphone", type="filepath"),
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
],
outputs="text",
title="Microphone Transcription",
description="Transcribe audio captured through your microphone.",
allow_flagging="never",
)
# File Upload Transcribe Tab
file_transcribe_interface = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(sources="upload", type="filepath", label="Audio file"),
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
],
outputs="text",
title="Audio File Transcription",
description="Transcribe uploaded audio files of arbitrary length.",
allow_flagging="never",
)
# Organize Tabs in the Gradio App
with demo:
gr.TabbedInterface(
[yt_transcribe_interface, mf_transcribe_interface, file_transcribe_interface],
["YouTube", "Microphone", "Audio File"]
)
demo.queue().launch(ssr_mode=False)