import spaces import gradio as gr from transformers import AutoProcessor, AutoModelForCausalLM # import peft from pycocotools.coco import COCO import requests import copy import os from PIL import Image, ImageDraw, ImageFont import io import matplotlib.pyplot as plt import matplotlib.patches as patches import random import numpy as np import subprocess subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) models = { 'microsoft/Florence-2-large-ft': AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-large-ft', trust_remote_code=True).to("cuda").eval(), 'dwb2023/florence2-large-bccd-base-ft': AutoModelForCausalLM.from_pretrained('dwb2023/florence2-large-bccd-base-ft', trust_remote_code=True).to("cuda").eval(), } processors = { 'microsoft/Florence-2-large-ft': AutoProcessor.from_pretrained('microsoft/Florence-2-large-ft', trust_remote_code=True), 'dwb2023/florence2-large-bccd-base-ft': AutoProcessor.from_pretrained('microsoft/Florence-2-large-ft', trust_remote_code=True), } colormap = ['blue','orange','green','purple','brown','pink','gray','olive','cyan','red', 'lime','indigo','violet','aqua','magenta','coral','gold','tan','skyblue'] def fig_to_pil(fig): buf = io.BytesIO() fig.savefig(buf, format='png') buf.seek(0) return Image.open(buf) @spaces.GPU def run_example(task_prompt, image, text_input=None, model_id='microsoft/Florence-2-large'): model = models[model_id] processor = processors[model_id] if text_input is None: prompt = task_prompt else: prompt = task_prompt + text_input inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda") generated_ids = model.generate( input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, early_stopping=False, do_sample=False, num_beams=3, ) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] parsed_answer = processor.post_process_generation( generated_text, task=task_prompt, image_size=(image.width, image.height) ) return parsed_answer def plot_bbox(image, data): fig, ax = plt.subplots() ax.imshow(image) for bbox, label in zip(data['bboxes'], data['labels']): x1, y1, x2, y2 = bbox rect = patches.Rectangle((x1, y1), x2-x1, y2-y1, linewidth=1, edgecolor='r', facecolor='none') ax.add_patch(rect) plt.text(x1, y1, label, color='white', fontsize=8, bbox=dict(facecolor='red', alpha=0.5)) ax.axis('off') return fig def draw_polygons(image, prediction, fill_mask=False): draw = ImageDraw.Draw(image) scale = 1 for polygons, label in zip(prediction['polygons'], prediction['labels']): color = random.choice(colormap) fill_color = random.choice(colormap) if fill_mask else None for _polygon in polygons: _polygon = np.array(_polygon).reshape(-1, 2) if len(_polygon) < 3: print('Invalid polygon:', _polygon) continue _polygon = (_polygon * scale).reshape(-1).tolist() if fill_mask: draw.polygon(_polygon, outline=color, fill=fill_color) else: draw.polygon(_polygon, outline=color) draw.text((_polygon[0] + 8, _polygon[1] + 2), label, fill=color) return image def convert_to_od_format(data): bboxes = data.get('bboxes', []) labels = data.get('bboxes_labels', []) od_results = { 'bboxes': bboxes, 'labels': labels } return od_results def draw_ocr_bboxes(image, prediction): scale = 1 draw = ImageDraw.Draw(image) bboxes, labels = prediction['quad_boxes'], prediction['labels'] for box, label in zip(bboxes, labels): color = random.choice(colormap) new_box = (np.array(box) * scale).tolist() draw.polygon(new_box, width=3, outline=color) draw.text((new_box[0]+8, new_box[1]+2), "{}".format(label), align="right", fill=color) return image def process_image(image, task_prompt, text_input=None, model_id='dwb2023/florence2-large-bccd-base-ft'): image = Image.fromarray(image) # Convert NumPy array to PIL Image if task_prompt == 'Object Detection': task_prompt = '' results = run_example(task_prompt, image, model_id=model_id) fig = plot_bbox(image, results['']) return results, fig_to_pil(fig) else: return "", None # Return empty string and None for unknown task prompts def process_segmentation(image_path, annotation_file_path): coco = COCO(annotation_file_path) img_id = list(coco.imgs.keys())[0] img_info = coco.loadImgs(img_id)[0] ann_ids = coco.getAnnIds(imgIds=img_id) anns = coco.loadAnns(ann_ids) image = Image.open(image_path) for ann in anns: if 'segmentation' in ann and ann['segmentation']: image = draw_polygons(image, {'polygons': ann['segmentation'], 'labels': [coco.loadCats(ann['category_id'])[0]['name']]}) return image single_task_list =[ 'Object Detection' ] # Define the path to the example images and annotations file example_image_dir = 'examples/bccd-test/' annotations_file_path = os.path.join(example_image_dir, '_annotations.coco.json') # Get the list of example image files example_images = [f for f in os.listdir(example_image_dir) if f.endswith('.jpg')] with gr.Blocks(theme="sudeepshouche/minimalist") as demo: gr.Markdown("## 🧬OmniScience - building teams of fine tuned VLM models for diagnosis and detection 🔧") gr.Markdown("- 🔬Florence-2 Model Proof of Concept, focusing on Object Detection tasks.") gr.Markdown("- Fine-tuned for 🩸Blood Cell Detection using the [Roboflow BCCD dataset](https://universe.roboflow.com/roboflow-100/bccd-ouzjz/dataset/2), this model can detect blood cells and types in images.") gr.Markdown("") gr.Markdown("BCCD Datasets on Hugging Face:") gr.Markdown("- [🌺 Florence 2](https://huggingface.co/datasets/dwb2023/roboflow100-bccd-florence2/viewer/default/test?q=BloodImage_00038_jpg.rf.1b0ce1635e11b3b49302de527c86bb02.jpg), [💎 PaliGemma](https://huggingface.co/datasets/dwb2023/roboflow-bccd-paligemma/viewer/default/test?q=BloodImage_00038_jpg.rf.1b0ce1635e11b3b49302de527c86bb02.jpg)") with gr.Tab(label="Florence-2 Object Detection"): with gr.Row(): with gr.Column(): input_img = gr.Image(label="Input Picture") model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value='microsoft/Florence-2-large-ft') task_prompt = gr.Dropdown(choices=single_task_list, label="Task Prompt", value="Object Detection") text_input = gr.Textbox(label="Text Input", placeholder="Not used for Florence-2 Object Detection") submit_btn = gr.Button(value="Submit") with gr.Column(): output_text = gr.Textbox(label="Output Text") output_img = gr.Image(label="Output Image") gr.Examples( examples=[ ["examples/bccd-test/BloodImage_00038_jpg.rf.1b0ce1635e11b3b49302de527c86bb02.jpg", 'Object Detection'], ["examples/bccd-test/BloodImage_00044_jpg.rf.1c44102fcdf64fd178f1f16bb988d5cf.jpg", 'Object Detection'], ["examples/bccd-test/BloodImage_00062_jpg.rf.fbed5373cd2e0e732092ed5c7b28aa19.jpg", 'Object Detection'], ["examples/bccd-test/BloodImage_00090_jpg.rf.7e3d419774b20ef93d4ec6c4be8f64df.jpg", 'Object Detection'], ["examples/bccd-test/BloodImage_00099_jpg.rf.0a65e56401cdd71253e7bc04917c3558.jpg", 'Object Detection'], ["examples/bccd-test/BloodImage_00112_jpg.rf.6b8d185de08e65c6d765c824bb76ec68.jpg", 'Object Detection'], ["examples/bccd-test/BloodImage_00113_jpg.rf.ab69dfaa52c1b3249cf44fa66afbb619.jpg", 'Object Detection'], ["examples/bccd-test/BloodImage_00120_jpg.rf.4a2f84ca3564ef453b12ceb9c852e32e.jpg", 'Object Detection'], ], inputs=[input_img, task_prompt], outputs=[output_text, output_img], fn=process_image, cache_examples=False, label='Try examples' ) submit_btn.click(process_image, [input_img, task_prompt, model_selector], [output_text, output_img]) with gr.Tab(label="Segmentation"): with gr.Row(): with gr.Column(): input_img = gr.Dropdown(choices=example_images, label="Input Picture", value=example_images[0]) submit_btn = gr.Button(value="Submit") with gr.Column(): output_img = gr.Image(label="Output Image") def process_segmentation_tab(image_name): image_path = os.path.join(example_image_dir, image_name) result_image = process_segmentation(image_path, annotations_file_path) return result_image submit_btn.click(process_segmentation_tab, input_img, output_img) gr.Markdown("## 🚀Other Cool Stuff:") gr.Markdown("- [Florence 2 Whitepaper](https://arxiv.org/pdf/2311.06242) - how I found out about the Roboflow 100 and the BCCD dataset. Turns out this nugget was from the original [Florence whitepaper](https://arxiv.org/pdf/2111.11432) but useful all the same!") gr.Markdown("- [Roboflow YouTube Video on Florence 2 fine-tuning](https://youtu.be/i3KjYgxNH6w?si=x1ZMg9hsNe25Y19-&t=1296) - bookmarked an 🧠insightful trade-off analysis of various VLMs.") gr.Markdown("- [Landing AI - Vision Agent](https://va.landing.ai/) - 🌟just pure WOW. bringing agentic planning into solutions architecture.") gr.Markdown("- [OmniScience fork of Landing AI repo](https://huggingface.co/spaces/dwb2023/omniscience) - I had a lot of fun with this one... some great 🔍reverse engineering enabled by W&B's Weave📊.") gr.Markdown("- [Scooby Snacks🐕 - microservice based function calling with style](https://huggingface.co/spaces/dwb2023/blackbird-app) - Leveraging 🤖Claude Sonnet 3.5 to orchestrate Microservice-Based Function Calling.") demo.launch(debug=True)