File size: 13,295 Bytes
289132f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
import os
import openai
import datetime
import gradio as gr
import json
from jinja2 import Template
import requests
from dotenv import load_dotenv

load_dotenv()

# Initialize OpenAI
openai.api_key = os.environ.get('OPENAI_API_KEY')

# Configuration variables
airtable_api_key = os.environ.get('AIRTABLE_API_KEY')

# Airtable table names
policies_table_name = 'tbla6PC65qZfqdJhE'
prompts_table_name = 'tblYIZEB8m6JkGDEP'
qalog_table_name = 'tbl4oNgFPWM5xH1XO'
examples_table_name = 'tblu7sraOEmRgEGkp'
users_table_name = 'tblLNe5ZL47SvrAEk'
user_log_table_name = 'tblrlTsRrkl6BqMAJ'

# Define the style and content for the response field
label_text = "NILI Response"
color = "#6562F4"
background_color = "white"
border_radius = "10px"
response_label = f'<h3 style="color: {color}; background-color: {background_color}; border-radius: {border_radius}; padding: 10px;display: inline-block;">{label_text}</h3>'

#Airtable Base ID
base_id = 'appcUK3hUWC7GM2Kb'

#Name of the prompt temlate record
prompt_name = "NILI_v1"

#Header for the Airtable requests
headers = {
    "Authorization": f"Bearer {airtable_api_key}",
    "Content-Type": "application/json",
    "Accept": "application/json",
}

#Function to trim prompts....not used
def prompt_trim(prompt: str) -> str:
    lines = prompt.split('\n')
    trimmed = '\n'.join([l.strip() for l in lines])
    return trimmed

#Get the policies for the selected schools and concatenate them.
def get_policies(school_selection):

    airtable_endpoint = f'https://api.airtable.com/v0/{base_id}/{policies_table_name}'    

    # Parameters for the API request to filter by 'school' field and retrieve 'policy_text'
    params = {
        'filterByFormula': "OR({})".format(','.join(["school='{}'".format(school) for school in school_selection])),
        'fields[]': 'policy_text',  # Replace with the name of your field
    }

    # Initialize an empty string to store concatenated policies
    concatenated_policies = ''

    #print(params)

    try:
        # Send a GET request to the Airtable API
        response = requests.get(airtable_endpoint, headers=headers, params=params)

        # Check if the request was successful (status code 200)
        if response.status_code == 200:
            # Parse the JSON response
            data = response.json()

            # Check if there are records in the response
            if data.get('records'):
                
                # Extract the 'policy_text' values from each record and concatenate them
                for record in data['records']:
                    policy_text = record['fields']['policy_text']
                    if concatenated_policies:
                        concatenated_policies += "\n----------\n"
                    concatenated_policies += policy_text

            else:
                print("No records found in the 'policies' table for the selected schools.")
        else:
            print(f"Failed to retrieve data. Status code: {response.status_code}")
    except Exception as e:
        print(f"An error occurred: {str(e)}")

    #print(concatenated_policies)   

    return concatenated_policies

#Get a list of School Name from the policies for the UI dropdown
def get_schools():

    airtable_endpoint = f'https://api.airtable.com/v0/{base_id}/{policies_table_name}'    

    # Parameters for the API request to select only the 'school' field
    params = {
        'fields[]': 'school',  # Replace with the name of your field
        'sort[0][field]': 'school',  # Sort by the 'school' field
        'sort[0][direction]': 'asc',  # Sort in ascending order
    }

    schools = ''

    try:
        # Send a GET request to the Airtable API
        response = requests.get(airtable_endpoint, headers=headers, params=params)

        # Check if the request was successful (status code 200)
        if response.status_code == 200:
            # Parse the JSON response
            data = response.json()

            # Check if there are records in the response
            if data.get('records'):
                # Extract the 'school' values from each record
                schools = [record['fields']['school'] for record in data['records']]

            else:
                print("No records found in the 'policies' table.")
        else:
            print(f"Failed to retrieve data. Status code: {response.status_code}")
    except Exception as e:
        print(f"An error occurred: {str(e)}")

    return schools

#Get the designated prompt template record
def get_prompt(header, template_content):

    airtable_endpoint = f'https://api.airtable.com/v0/{base_id}/{prompts_table_name}'    

    params = {
        'filterByFormula': "prompt_name='NILI_v1'"
    }

    response = requests.get(airtable_endpoint, headers=headers, params=params)

    # Check for errors
    response.raise_for_status()

    data = response.json()

    # Check if there is at least one record matching the condition
    if data.get('records'):
        # Get the first record (there should be only one)
        record = data['records'][0]['fields']
            
        # Assign system_prompt and user_prompt to variables
        header = record.get('system_prompt', '')
        template_content = record.get('user_prompt', '')

    return header, template_content


def get_examples():

    airtable_endpoint = f'https://api.airtable.com/v0/{base_id}/{examples_table_name}'    

    # Send your request and parse the response
    response = requests.get(airtable_endpoint, headers=headers)
    data = json.loads(response.text)

    # Check for errors
    response.raise_for_status()

    for record in data['records']:
        nil_question = record['fields']['nil_question']
        ui_examples.append([None, None, None, nil_question])

    #print(ui_examples)
           

def append_to_at_qalog(your_role, school_selection, output_format, input_text, gpt_response,response_time,question_cost,prompt_tokens,completion_tokens):

    airtable_endpoint = f'https://api.airtable.com/v0/{base_id}/{qalog_table_name}'
    
    # Organize data for Airtable
    new_fields = {
            'your_role': str(your_role),
            'school_selection': str(school_selection),
            'output_format': str(output_format),
            'input_text': str(input_text),
            'gpt_response': str(gpt_response),
            'response_time': str(response_time),
            'question_cost': question_cost,
            'user_name': str(logged_in_user),
            'prompt_tokens': prompt_tokens,
            'completion_tokens': completion_tokens
        }

    data = {
        'fields': new_fields
        }
    try:
        # Post data to Airtable
        response = requests.post(airtable_endpoint, headers=headers, json=data)

        # Check for errors
        response.raise_for_status()

    except requests.exceptions.HTTPError as http_error:
        # Handle the HTTP error (e.g., log it or display an error message)
        print(f"HTTP error occurred: {http_error}")

    except Exception as e:
        # Handle exceptions, log errors, or raise them as needed
        print(f"An error occurred: {str(e)}")


#Chatbot Function
def chatbot(your_role,school_selection,output_format,input_text):

    start_time = datetime.datetime.now()

    # school_selection holds an array of one or more schools
    #print(school_selection)

    # Read the Hydrated policies
  
    policies = get_policies(school_selection)

    template_content = ''
    header = ''

    header, template_content = get_prompt(header, template_content)

    #print(header)
    #print(template_content)

    header_template = Template(header)
    merged_header = header_template.render(your_role=your_role)

    # Create a Jinja2 template from the content
    template = Template(template_content)

    # Render the template with the policy JSON
    analysis_input = template.render(policies=policies, question=input_text,format=output_format,your_role=your_role)

    trimmed_input = prompt_trim(analysis_input)

    with open('analysis_input.txt', 'w', encoding='utf-8') as out_file:
        out_file.write(trimmed_input)
  
    response = openai.ChatCompletion.create(
        model="gpt-4",
        #model="gpt-3.5-turbo",
        temperature=0,
        messages=[
            {
                "role": "system",
                "content": merged_header
            },
            {
                "role": "user",
                "content": analysis_input
            }
          ]
        )

    gpt_response = response.choices[0].message["content"]

    tokens_used = response.usage

    question_cost = (tokens_used.get('total_tokens', 0) / 1000) * .03
    prompt_tokens = tokens_used.get('prompt_tokens',)
    completion_tokens = tokens_used.get('completion_tokens', 0)

    """
    with open('response.txt', 'w', encoding='utf-8') as out_file:
        out_file.write(gpt_response)
    """
    end_time = datetime.datetime.now()
    response_time = end_time - start_time

    append_to_at_qalog(your_role, school_selection, output_format, input_text, gpt_response,response_time,question_cost,prompt_tokens,completion_tokens)

    return response_label,gpt_response

def log_login(username):

    airtable_endpoint = f'https://api.airtable.com/v0/{base_id}/{user_log_table_name}'

    # Organize data for Airtable
    new_fields = {
            'user_name': str(username),
        }

    data = {
        'fields': new_fields
        }

    try:
    # Post data to Airtable
        response = requests.post(airtable_endpoint, headers=headers, json=data)

        # Check for errors
        response.raise_for_status()

    except requests.exceptions.HTTPError as http_error:
        # Handle the HTTP error (e.g., log it or display an error message)
        print(f"HTTP error occurred: {http_error}")

    except Exception as e:
        # Handle exceptions, log errors, or raise them as needed
        print(f"An error occurred: {str(e)}")


def login_auth(username, password):

    airtable_endpoint = f'https://api.airtable.com/v0/{base_id}/{users_table_name}'
    
    # Query the 'users' table to check for a match with the provided username and password
    params = {
        'filterByFormula': f'AND(user_name = "{username}", password = "{password}")'
    }

    response = requests.get(airtable_endpoint, headers=headers, params=params)

    if response.status_code == 200:
        data = response.json()
        #If the matching user/password record is found:
        if data.get('records'):

            #Log that the user logged in
            log_login(username)

            #Set the global logged_in_user variable. This used in the append_to_at_qalog function to track what user asked the question
            global logged_in_user
            logged_in_user = username

            return True

        print(f"Invalid user/password combination")

    return False

#Gradio UI
CIMStheme = gr.themes.Soft().set(button_primary_background_fill='#6562F4')

# Initialize an empty list to store the examples
ui_examples = []
school_selection = []

schools = get_schools()

get_examples()

logged_in_user = 'admin'

with gr.Blocks(CIMStheme) as iface:
    with gr.Row():
        with gr.Column(scale=2):
            gr.Image(label="Logo",value="CIMS Logo Purple.png",width=10,show_download_button=False,interactive=False,show_label=False,elem_id="logo",container=False)
        with gr.Column(scale=2):
            #gr.Textbox(value="# NILI - Powered by CIMS.AI",show_label=False,interactive=False,text_align="center",elem_id="CIMSTitle")
            gr.Markdown(value="# NILI - Powered by CIMS.AI")
        with gr.Column(scale=2):
            gr.Markdown("")
    with gr.Row():
        with gr.Column():
            gr.Interface(fn=chatbot,
                     inputs=[
                         gr.components.Dropdown(["Student Athlete","Parent","Athletic Director"],multiselect=False,info="Select a role.",label="User Role", ),
                         gr.components.Dropdown(schools,multiselect=True,info="Select one or more schools. This will help set the context of your question.",label="School Context"),
                         gr.components.Dropdown(["Summary","Detailed Analysis","Table"],multiselect=False,info="Select the desired output format.",label="Output Format"),
                         gr.components.Textbox(lines=5, placeholder="Enter your question here", label="NIL Question")],
                     outputs=[
                         gr.components.Markdown(response_label),
                         gr.components.HTML(label="NILI Response")
                         ],
                     description="Ask any question about Name, Image, Likeness (NIL)",
                     allow_flagging="manual",
                     examples=ui_examples,
                     cache_examples=False,
                     flagging_options=["The response is incorrect","The response is inappropriate","The response doesn't make sense"]
                      )
    with gr.Row():
        with gr.Column():
            gr.HTML('<center><i>CIMS.AI Confidential 2023</i></center>')

iface.launch(auth=login_auth, auth_message= "Enter your username and password that you received from CIMS.AI. To request a login, please email 'info@cims.ai'")
#iface.launch(share=True)