import os
import openai
import datetime
import gradio as gr
import json
from jinja2 import Template
import requests
from dotenv import load_dotenv
load_dotenv()
# Initialize OpenAI
openai.api_key = os.environ.get('OPENAI_API_KEY')
# Configuration variables
airtable_api_key = os.environ.get('AIRTABLE_API_KEY')
# Airtable table names
policies_table_name = 'tbla6PC65qZfqdJhE'
prompts_table_name = 'tblYIZEB8m6JkGDEP'
qalog_table_name = 'tbl4oNgFPWM5xH1XO'
examples_table_name = 'tblu7sraOEmRgEGkp'
users_table_name = 'tblLNe5ZL47SvrAEk'
user_log_table_name = 'tblrlTsRrkl6BqMAJ'
# Define the style and content for the response field
label_text = "NILI Response"
color = "#6562F4"
background_color = "white"
border_radius = "10px"
response_label = f'
{label_text}
'
#Airtable Base ID
base_id = 'appcUK3hUWC7GM2Kb'
#Name of the prompt temlate record
prompt_name = "NILI_v1"
#Header for the Airtable requests
headers = {
"Authorization": f"Bearer {airtable_api_key}",
"Content-Type": "application/json",
"Accept": "application/json",
}
#Function to trim prompts....not used
def prompt_trim(prompt: str) -> str:
lines = prompt.split('\n')
trimmed = '\n'.join([l.strip() for l in lines])
return trimmed
#Get the policies for the selected schools and concatenate them.
def get_policies(school_selection):
airtable_endpoint = f'https://api.airtable.com/v0/{base_id}/{policies_table_name}'
# Parameters for the API request to filter by 'school' field and retrieve 'policy_text'
params = {
'filterByFormula': "OR({})".format(','.join(["school='{}'".format(school) for school in school_selection])),
'fields[]': 'policy_text', # Replace with the name of your field
}
# Initialize an empty string to store concatenated policies
concatenated_policies = ''
#print(params)
try:
# Send a GET request to the Airtable API
response = requests.get(airtable_endpoint, headers=headers, params=params)
# Check if the request was successful (status code 200)
if response.status_code == 200:
# Parse the JSON response
data = response.json()
# Check if there are records in the response
if data.get('records'):
# Extract the 'policy_text' values from each record and concatenate them
for record in data['records']:
policy_text = record['fields']['policy_text']
if concatenated_policies:
concatenated_policies += "\n----------\n"
concatenated_policies += policy_text
else:
print("No records found in the 'policies' table for the selected schools.")
else:
print(f"Failed to retrieve data. Status code: {response.status_code}")
except Exception as e:
print(f"An error occurred: {str(e)}")
#print(concatenated_policies)
return concatenated_policies
#Get a list of School Name from the policies for the UI dropdown
def get_schools():
airtable_endpoint = f'https://api.airtable.com/v0/{base_id}/{policies_table_name}'
# Parameters for the API request to select only the 'school' field
params = {
'fields[]': 'school', # Replace with the name of your field
'sort[0][field]': 'school', # Sort by the 'school' field
'sort[0][direction]': 'asc', # Sort in ascending order
}
schools = ''
try:
# Send a GET request to the Airtable API
response = requests.get(airtable_endpoint, headers=headers, params=params)
# Check if the request was successful (status code 200)
if response.status_code == 200:
# Parse the JSON response
data = response.json()
# Check if there are records in the response
if data.get('records'):
# Extract the 'school' values from each record
schools = [record['fields']['school'] for record in data['records']]
else:
print("No records found in the 'policies' table.")
else:
print(f"Failed to retrieve data. Status code: {response.status_code}")
except Exception as e:
print(f"An error occurred: {str(e)}")
return schools
#Get the designated prompt template record
def get_prompt(header, template_content):
airtable_endpoint = f'https://api.airtable.com/v0/{base_id}/{prompts_table_name}'
params = {
'filterByFormula': "prompt_name='NILI_v1'"
}
response = requests.get(airtable_endpoint, headers=headers, params=params)
# Check for errors
response.raise_for_status()
data = response.json()
# Check if there is at least one record matching the condition
if data.get('records'):
# Get the first record (there should be only one)
record = data['records'][0]['fields']
# Assign system_prompt and user_prompt to variables
header = record.get('system_prompt', '')
template_content = record.get('user_prompt', '')
return header, template_content
def get_examples():
airtable_endpoint = f'https://api.airtable.com/v0/{base_id}/{examples_table_name}'
# Send your request and parse the response
response = requests.get(airtable_endpoint, headers=headers)
data = json.loads(response.text)
# Check for errors
response.raise_for_status()
for record in data['records']:
nil_question = record['fields']['nil_question']
ui_examples.append([None, None, None, nil_question])
#print(ui_examples)
def append_to_at_qalog(your_role, school_selection, output_format, input_text, gpt_response,response_time,question_cost,prompt_tokens,completion_tokens):
airtable_endpoint = f'https://api.airtable.com/v0/{base_id}/{qalog_table_name}'
# Organize data for Airtable
new_fields = {
'your_role': str(your_role),
'school_selection': str(school_selection),
'output_format': str(output_format),
'input_text': str(input_text),
'gpt_response': str(gpt_response),
'response_time': str(response_time),
'question_cost': question_cost,
'user_name': str(logged_in_user),
'prompt_tokens': prompt_tokens,
'completion_tokens': completion_tokens
}
data = {
'fields': new_fields
}
try:
# Post data to Airtable
response = requests.post(airtable_endpoint, headers=headers, json=data)
# Check for errors
response.raise_for_status()
except requests.exceptions.HTTPError as http_error:
# Handle the HTTP error (e.g., log it or display an error message)
print(f"HTTP error occurred: {http_error}")
except Exception as e:
# Handle exceptions, log errors, or raise them as needed
print(f"An error occurred: {str(e)}")
#Chatbot Function
def chatbot(your_role,school_selection,output_format,input_text):
start_time = datetime.datetime.now()
# school_selection holds an array of one or more schools
#print(school_selection)
# Read the Hydrated policies
policies = get_policies(school_selection)
template_content = ''
header = ''
header, template_content = get_prompt(header, template_content)
#print(header)
#print(template_content)
header_template = Template(header)
merged_header = header_template.render(your_role=your_role)
# Create a Jinja2 template from the content
template = Template(template_content)
# Render the template with the policy JSON
analysis_input = template.render(policies=policies, question=input_text,format=output_format,your_role=your_role)
trimmed_input = prompt_trim(analysis_input)
with open('analysis_input.txt', 'w', encoding='utf-8') as out_file:
out_file.write(trimmed_input)
response = openai.ChatCompletion.create(
model="gpt-4",
#model="gpt-3.5-turbo",
temperature=0,
messages=[
{
"role": "system",
"content": merged_header
},
{
"role": "user",
"content": analysis_input
}
]
)
gpt_response = response.choices[0].message["content"]
tokens_used = response.usage
question_cost = (tokens_used.get('total_tokens', 0) / 1000) * .03
prompt_tokens = tokens_used.get('prompt_tokens',)
completion_tokens = tokens_used.get('completion_tokens', 0)
"""
with open('response.txt', 'w', encoding='utf-8') as out_file:
out_file.write(gpt_response)
"""
end_time = datetime.datetime.now()
response_time = end_time - start_time
append_to_at_qalog(your_role, school_selection, output_format, input_text, gpt_response,response_time,question_cost,prompt_tokens,completion_tokens)
return response_label,gpt_response
def log_login(username):
airtable_endpoint = f'https://api.airtable.com/v0/{base_id}/{user_log_table_name}'
# Organize data for Airtable
new_fields = {
'user_name': str(username),
}
data = {
'fields': new_fields
}
try:
# Post data to Airtable
response = requests.post(airtable_endpoint, headers=headers, json=data)
# Check for errors
response.raise_for_status()
except requests.exceptions.HTTPError as http_error:
# Handle the HTTP error (e.g., log it or display an error message)
print(f"HTTP error occurred: {http_error}")
except Exception as e:
# Handle exceptions, log errors, or raise them as needed
print(f"An error occurred: {str(e)}")
def login_auth(username, password):
airtable_endpoint = f'https://api.airtable.com/v0/{base_id}/{users_table_name}'
# Query the 'users' table to check for a match with the provided username and password
params = {
'filterByFormula': f'AND(user_name = "{username}", password = "{password}")'
}
response = requests.get(airtable_endpoint, headers=headers, params=params)
if response.status_code == 200:
data = response.json()
#If the matching user/password record is found:
if data.get('records'):
#Log that the user logged in
log_login(username)
#Set the global logged_in_user variable. This used in the append_to_at_qalog function to track what user asked the question
global logged_in_user
logged_in_user = username
return True
print(f"Invalid user/password combination")
return False
#Gradio UI
CIMStheme = gr.themes.Soft().set(button_primary_background_fill='#6562F4')
# Initialize an empty list to store the examples
ui_examples = []
school_selection = []
schools = get_schools()
get_examples()
logged_in_user = 'admin'
with gr.Blocks(CIMStheme) as iface:
with gr.Row():
with gr.Column(scale=2):
gr.Image(label="Logo",value="CIMS Logo Purple.png",width=10,show_download_button=False,interactive=False,show_label=False,elem_id="logo",container=False)
with gr.Column(scale=2):
#gr.Textbox(value="# NILI - Powered by CIMS.AI",show_label=False,interactive=False,text_align="center",elem_id="CIMSTitle")
gr.Markdown(value="# NILI - Powered by CIMS.AI")
with gr.Column(scale=2):
gr.Markdown("")
with gr.Row():
with gr.Column():
gr.Interface(fn=chatbot,
inputs=[
gr.components.Dropdown(["Student Athlete","Parent","Athletic Director"],multiselect=False,info="Select a role.",label="User Role", ),
gr.components.Dropdown(schools,multiselect=True,info="Select one or more schools. This will help set the context of your question.",label="School Context"),
gr.components.Dropdown(["Summary","Detailed Analysis","Table"],multiselect=False,info="Select the desired output format.",label="Output Format"),
gr.components.Textbox(lines=5, placeholder="Enter your question here", label="NIL Question")],
outputs=[
gr.components.Markdown(response_label),
gr.components.HTML(label="NILI Response")
],
description="Ask any question about Name, Image, Likeness (NIL)",
allow_flagging="manual",
examples=ui_examples,
cache_examples=False,
flagging_options=["The response is incorrect","The response is inappropriate","The response doesn't make sense"]
)
with gr.Row():
with gr.Column():
gr.HTML('CIMS.AI Confidential 2023')
iface.launch(auth=login_auth, auth_message= "Enter your username and password that you received from CIMS.AI. To request a login, please email 'info@cims.ai'")
#iface.launch(share=True)