import os from params import * from dataset.vocab import Vocab from dataset.util import load_dataset, load_vsec_dataset if __name__ == "__main__": import argparse description = ''' Corrector: Usage: python corrector.py --model tfmwtr --data_path ./data --dataset binhvq Params: --model tfmwtr - Transformer with Tokenization Repair --data_path: default to ./data --dataset: default to 'binhvq' ''' parser = argparse.ArgumentParser(description=description) parser.add_argument('--model', type=str, default='tfmwtr') parser.add_argument('--data_path', type=str, default='./data') parser.add_argument('--dataset', type=str, default='binhvq') parser.add_argument('--test_dataset', type=str, default='binhvq') parser.add_argument("--beams", type=int, default=2) parser.add_argument("--fraction", type=float, default= 1.0) parser.add_argument('--text', type=str, default='Bình mnh ơi day ch ưa, café xáng vớitôi dược không?') args = parser.parse_args() dataset_path = os.path.join(args.data_path, f'{args.test_dataset}') weight_ext = 'pth' checkpoint_dir = os.path.join(args.data_path, f'checkpoints/{args.model}') weight_path = os.path.join(checkpoint_dir, f'locdx.weights.{weight_ext}') vocab_path = os.path.join(args.data_path, f'binhvq/binhvq.vocab.pkl') correct_file = f'{args.test_dataset}.test' incorrect_file = f'{args.test_dataset}.test.noise' length_file = f'{args.dataset}.length.test' if args.test_dataset != "vsec": test_data = load_dataset(base_path=dataset_path, corr_file=correct_file, incorr_file=incorrect_file, length_file=length_file) else: test_data = load_vsec_dataset(base_path=dataset_path, corr_file=correct_file, incorr_file=incorrect_file) length_of_data = len(test_data) test_data = test_data[0 : int(args.fraction * length_of_data) ] vocab = Vocab() vocab.load_vocab_dict(vocab_path) from dataset.autocorrect_dataset import SpellCorrectDataset from models.corrector import Corrector from models.model import ModelWrapper from models.util import load_weights test_dataset = SpellCorrectDataset(dataset=test_data) model_wrapper = ModelWrapper(args.model, vocab) corrector = Corrector(model_wrapper) load_weights(corrector.model, weight_path) corrector.evaluate(test_dataset, beams = args.beams)