eagle0504's picture
Update app.py
6e06b59 verified
import streamlit as st
import os
from helper import invoke_text_api, invoke_text_image_api
import base64
# Set Streamlit page config to wide layout
st.set_page_config(page_title="Chatbot", layout="wide")
# App Title with Emoji
st.title("πŸ€– Chatbot with Image Support πŸ–ΌοΈ")
# Sidebar for Image Upload
st.sidebar.header("πŸ“‚ Upload an Image (Optional)")
uploaded_file = st.sidebar.file_uploader("πŸ“Έ Upload an image", type=["png", "jpg", "jpeg"])
# If an image is uploaded, display it in the sidebar
if uploaded_file:
st.sidebar.image(uploaded_file, caption="πŸ–ΌοΈ Uploaded Image Preview", use_container_width=True)
# Sidebar Parameters for AI Model
st.sidebar.header("βš™οΈ Model Parameters")
max_tokens = st.sidebar.slider("πŸ“ Max Tokens (Response Length)", 100, 2000, 1000)
temperature = st.sidebar.slider("πŸ”₯ Temperature (Creativity)", 0.0, 1.0, 0.7)
top_k = st.sidebar.slider("🎯 Top K (Diversity Filter)", 1, 500, 150)
top_p = st.sidebar.slider("πŸ“Š Top P (Probability Sampling)", 0.0, 1.0, 0.98)
# Button to clear chat history
if st.sidebar.button("πŸ—‘οΈ Clear Chat History"):
st.session_state.messages = [] # Reset conversation history
st.rerun() # Corrected method to refresh the app
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages from history
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Handle user input
if prompt := st.chat_input("What would you like to ask? πŸ€”"):
# Display user message
st.chat_message("user").markdown(prompt)
st.session_state.messages.append({"role": "user", "content": prompt})
# Call the appropriate API function based on input type
with st.spinner("πŸ€– Thinking..."):
if uploaded_file:
# Convert uploaded image to Base64
image_bytes = uploaded_file.read()
base64_image = base64.b64encode(image_bytes).decode("utf-8")
response = invoke_text_image_api(base64_image, prompt, max_tokens, temperature, top_k, top_p)
else:
response = invoke_text_api(prompt, max_tokens, temperature, top_k, top_p)
# Display assistant response
with st.chat_message("assistant"):
st.markdown(response)
st.session_state.messages.append({"role": "assistant", "content": response})