YSA-Larkin-Comm / app.py
eagle0504's picture
Update app.py
29c5180 verified
import os
import string
import time
from typing import Any, Dict, List, Tuple, Union
import chromadb
import numpy as np
import openai
import pandas as pd
import requests
import streamlit as st
from datasets import load_dataset
from langchain.document_loaders import TextLoader
from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma
from scipy.spatial.distance import cosine
from utils.helper_functions import *
openai.api_key = os.environ["OPENAI_API_KEY"]
# Front-end Design
st.set_page_config(layout="wide")
st.title("YSA|Larkin Chatbot")
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
st.sidebar.markdown(
"""
### Instructions:
This app guides you through [YSA](https://youthspiritartworks.org/)/[Larkin](https://larkinstreetyouth.org/) website , utilizing a RAG-ready Q&A dataset [here](https://huggingface.co/datasets/eagle0504/youthless-homeless-shelter-web-scrape-dataset-qa-formatted) for chatbot assistance. The Larkin domain is processed into QA data [here](https://huggingface.co/datasets/eagle0504/larkin-web-scrape-dataset-qa-formatted). ๐Ÿค– Enter a question, and it finds similar ones in the database, offering answers with a distance score to gauge relevanceโ€”the lower the score, the closer the match. ๐ŸŽฏ For better accuracy and to reduce errors, user feedback helps refine the database. โœจ
"""
)
st.sidebar.success("Select a shelter first!")
option = st.sidebar.selectbox("Which website do you want to ask?", ("YSA", "Larkin"))
st.sidebar.warning(
"Runnning AI Judge takes a bit longer so we default this option as 'No'."
)
run_ai_judge = st.sidebar.selectbox(
"Shall we run AI Judge to provide additional scores?", ("No", "Yes")
)
special_threshold = st.sidebar.number_input(
"Insert a threshold for distances score to filter data (default 0.2):",
value=0.2,
placeholder="Type a number...",
)
user_timer = st.sidebar.selectbox("Shall we time each step?", ("No", "Yes"))
st.sidebar.success(
"The 'distances' score indicates the proximity of your question to our database questions (lower is better). The 'ai_judge' ranks the similarity between user's question and database answers independently (higher is better)."
)
clear_button = st.sidebar.button("Clear Conversation", key="clear")
if clear_button:
st.session_state.messages = []
# Load the dataset from a provided source.
if option == "YSA":
begin_t = time.time()
dataset = load_dataset(
"eagle0504/ysa-web-scrape-dataset-qa-formatted-small-version"
)
end_t = time.time()
if user_timer == "Yes":
st.success(f"{option} Database loaded. | Time: {end_t - begin_t} sec")
initial_input = "Tell me about YSA"
else:
begin_t = time.time()
dataset = load_dataset("eagle0504/larkin-web-scrape-dataset-qa-formatted")
end_t = time.time()
if user_timer == "Yes":
st.success(f"{option} Database loaded. | Time: {end_t - begin_t} sec")
initial_input = "Tell me about Larkin"
# Initialize a new client for ChromeDB.
client = chromadb.Client()
# Generate a random number between 1 billion and 10 billion.
random_number: int = np.random.randint(low=1e9, high=1e10)
# Generate a random string consisting of 10 uppercase letters and digits.
random_string: str = "".join(
np.random.choice(list(string.ascii_uppercase + string.digits), size=10)
)
# Combine the random number and random string into one identifier.
combined_string: str = f"{random_number}{random_string}"
# Create a new collection in ChromeDB with the combined string as its name.
collection = client.create_collection(combined_string)
# Embed and store the first N supports for this demo
with st.spinner("Loading, please be patient with us ... ๐Ÿ™"):
L = len(dataset["train"]["questions"])
begin_t = time.time()
collection.add(
ids=[str(i) for i in range(0, L)], # IDs are just strings
documents=dataset["train"]["questions"], # Enter questions here
metadatas=[{"type": "support"} for _ in range(0, L)],
)
end_t = time.time()
if user_timer == "Yes":
st.success(f"Add to VectorDB. | Time: {end_t - begin_t} sec")
# React to user input
if prompt := st.chat_input(initial_input):
with st.spinner("Loading, please be patient with us ... ๐Ÿ™"):
# Display user message in chat message container
st.chat_message("user").markdown(prompt)
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
question = prompt
begin_t = time.time()
results = collection.query(query_texts=question, n_results=5)
end_t = time.time()
if user_timer == "Yes":
st.success(f"Query answser. | Time: {end_t - begin_t} sec")
idx = results["ids"][0]
idx = [int(i) for i in idx]
ref = pd.DataFrame(
{
"idx": idx,
"questions": [dataset["train"]["questions"][i] for i in idx],
"answers": [dataset["train"]["answers"][i] for i in idx],
"distances": results["distances"][0],
}
)
# special_threshold = st.sidebar.slider('How old are you?', 0, 0.6, 0.1) # 0.3
filtered_ref = ref[ref["distances"] < special_threshold]
if filtered_ref.shape[0] > 0:
if user_timer == "Yes":
st.success("There are highly relevant information in our database.")
ref_from_db_search = filtered_ref["answers"].str.cat(sep=" ")
final_ref = filtered_ref
else:
st.warning(
"The database may not have relevant information to help your question so please be aware of hallucinations."
)
ref_from_db_search = ref["answers"].str.cat(sep=" ")
final_ref = ref
if option == "YSA":
try:
begin_t = time.time()
llm_response = llama2_7b_ysa(question)
end_t = time.time()
if user_timer == "Yes":
st.success(f"Running LLM. | Time: {end_t - begin_t} sec")
did_this_llm_run = "yes"
except:
st.warning("Sorry, the inference endpoint is temporarily down. ๐Ÿ˜”")
llm_response = "NA."
did_this_llm_run = "no"
else:
st.warning(
"Apologies! We are in the progress of fine-tune the model, so it's currently unavailable. โš™๏ธ"
)
llm_response = "NA"
finetuned_llm_guess = ["from_llm", question, llm_response, 0]
if did_this_llm_run == "no":
st.warning("Fine-tuned LLM not used in this call.")
else:
final_ref.loc[-1] = finetuned_llm_guess
final_ref = final_ref.reset_index()
# add ai judge as additional rating
if run_ai_judge == "Yes":
independent_ai_judge_score = []
begin_t = time.time()
for i in range(final_ref.shape[0]):
this_content = final_ref["answers"][i]
if len(this_content) > 3:
arr1 = openai_text_embedding(question)
arr2 = openai_text_embedding(this_content)
# this_score = calculate_sts_openai_score(question, this_content)
this_score = quantized_influence(arr1, arr2, k=3)[0]
else:
this_score = 0
independent_ai_judge_score.append(this_score)
final_ref["ai_judge"] = independent_ai_judge_score
end_t = time.time()
if user_timer == "Yes":
st.success(f"Using AI Judge. | Time: {end_t - begin_t} sec")
engineered_prompt = f"""
Based on the context: {ref_from_db_search}
answer the user question: {question}
Answer the question directly (don't say "based on the context, ...")
"""
begin_t = time.time()
answer = call_chatgpt(engineered_prompt)
end_t = time.time()
if user_timer == "Yes":
st.success(f"Final API Call. | Time: {end_t - begin_t} sec")
response = answer
# Display assistant response in chat message container
with st.chat_message("assistant"):
with st.spinner("Wait for it..."):
st.markdown(response)
with st.expander("See reference:"):
st.table(final_ref)
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": response})