Spaces:
Running
Running
use time button added
Browse files
app.py
CHANGED
@@ -56,6 +56,7 @@ special_threshold = st.sidebar.number_input(
|
|
56 |
value=0.2,
|
57 |
placeholder="Type a number...",
|
58 |
)
|
|
|
59 |
st.sidebar.success(
|
60 |
"The 'distances' score indicates the proximity of your question to our database questions (lower is better). The 'ai_judge' ranks the similarity between user's question and database answers independently (higher is better)."
|
61 |
)
|
@@ -71,13 +72,15 @@ if option == "YSA":
|
|
71 |
"eagle0504/ysa-web-scrape-dataset-qa-formatted-small-version"
|
72 |
)
|
73 |
end_t = time.time()
|
74 |
-
|
|
|
75 |
initial_input = "Tell me about YSA"
|
76 |
else:
|
77 |
begin_t = time.time()
|
78 |
dataset = load_dataset("eagle0504/larkin-web-scrape-dataset-qa-formatted")
|
79 |
end_t = time.time()
|
80 |
-
|
|
|
81 |
initial_input = "Tell me about Larkin"
|
82 |
|
83 |
|
@@ -109,7 +112,8 @@ with st.spinner("Loading, please be patient with us ... π"):
|
|
109 |
metadatas=[{"type": "support"} for _ in range(0, L)],
|
110 |
)
|
111 |
end_t = time.time()
|
112 |
-
|
|
|
113 |
|
114 |
|
115 |
# React to user input
|
@@ -124,7 +128,8 @@ if prompt := st.chat_input(initial_input):
|
|
124 |
begin_t = time.time()
|
125 |
results = collection.query(query_texts=question, n_results=5)
|
126 |
end_t = time.time()
|
127 |
-
|
|
|
128 |
idx = results["ids"][0]
|
129 |
idx = [int(i) for i in idx]
|
130 |
ref = pd.DataFrame(
|
@@ -138,7 +143,8 @@ if prompt := st.chat_input(initial_input):
|
|
138 |
# special_threshold = st.sidebar.slider('How old are you?', 0, 0.6, 0.1) # 0.3
|
139 |
filtered_ref = ref[ref["distances"] < special_threshold]
|
140 |
if filtered_ref.shape[0] > 0:
|
141 |
-
|
|
|
142 |
ref_from_db_search = filtered_ref["answers"].str.cat(sep=" ")
|
143 |
final_ref = filtered_ref
|
144 |
else:
|
@@ -153,7 +159,8 @@ if prompt := st.chat_input(initial_input):
|
|
153 |
begin_t = time.time()
|
154 |
llm_response = llama2_7b_ysa(question)
|
155 |
end_t = time.time()
|
156 |
-
|
|
|
157 |
except:
|
158 |
st.warning("Sorry, the inference endpoint is temporarily down. π")
|
159 |
llm_response = "NA."
|
@@ -185,7 +192,8 @@ if prompt := st.chat_input(initial_input):
|
|
185 |
final_ref["ai_judge"] = independent_ai_judge_score
|
186 |
|
187 |
end_t = time.time()
|
188 |
-
|
|
|
189 |
|
190 |
engineered_prompt = f"""
|
191 |
Based on the context: {ref_from_db_search}
|
@@ -198,7 +206,8 @@ if prompt := st.chat_input(initial_input):
|
|
198 |
begin_t = time.time()
|
199 |
answer = call_chatgpt(engineered_prompt)
|
200 |
end_t = time.time()
|
201 |
-
|
|
|
202 |
response = answer
|
203 |
|
204 |
# Display assistant response in chat message container
|
|
|
56 |
value=0.2,
|
57 |
placeholder="Type a number...",
|
58 |
)
|
59 |
+
user_timer = st.sidebar.selectbox("Shall we time each step?", ("No", "Yes"))
|
60 |
st.sidebar.success(
|
61 |
"The 'distances' score indicates the proximity of your question to our database questions (lower is better). The 'ai_judge' ranks the similarity between user's question and database answers independently (higher is better)."
|
62 |
)
|
|
|
72 |
"eagle0504/ysa-web-scrape-dataset-qa-formatted-small-version"
|
73 |
)
|
74 |
end_t = time.time()
|
75 |
+
if user_timer == "Yes":
|
76 |
+
st.success(f"{option} Database loaded. | Time: {end_t - begin_t} sec")
|
77 |
initial_input = "Tell me about YSA"
|
78 |
else:
|
79 |
begin_t = time.time()
|
80 |
dataset = load_dataset("eagle0504/larkin-web-scrape-dataset-qa-formatted")
|
81 |
end_t = time.time()
|
82 |
+
if user_timer == "Yes":
|
83 |
+
st.success(f"{option} Database loaded. | Time: {end_t - begin_t} sec")
|
84 |
initial_input = "Tell me about Larkin"
|
85 |
|
86 |
|
|
|
112 |
metadatas=[{"type": "support"} for _ in range(0, L)],
|
113 |
)
|
114 |
end_t = time.time()
|
115 |
+
if user_timer == "Yes":
|
116 |
+
st.success(f"Add to VectorDB. | Time: {end_t - begin_t} sec")
|
117 |
|
118 |
|
119 |
# React to user input
|
|
|
128 |
begin_t = time.time()
|
129 |
results = collection.query(query_texts=question, n_results=5)
|
130 |
end_t = time.time()
|
131 |
+
if user_timer == "Yes":
|
132 |
+
st.success(f"Query answser. | Time: {end_t - begin_t} sec")
|
133 |
idx = results["ids"][0]
|
134 |
idx = [int(i) for i in idx]
|
135 |
ref = pd.DataFrame(
|
|
|
143 |
# special_threshold = st.sidebar.slider('How old are you?', 0, 0.6, 0.1) # 0.3
|
144 |
filtered_ref = ref[ref["distances"] < special_threshold]
|
145 |
if filtered_ref.shape[0] > 0:
|
146 |
+
if user_timer == "Yes":
|
147 |
+
st.success("There are highly relevant information in our database.")
|
148 |
ref_from_db_search = filtered_ref["answers"].str.cat(sep=" ")
|
149 |
final_ref = filtered_ref
|
150 |
else:
|
|
|
159 |
begin_t = time.time()
|
160 |
llm_response = llama2_7b_ysa(question)
|
161 |
end_t = time.time()
|
162 |
+
if user_timer == "Yes":
|
163 |
+
st.success(f"Running LLM. | Time: {end_t - begin_t} sec")
|
164 |
except:
|
165 |
st.warning("Sorry, the inference endpoint is temporarily down. π")
|
166 |
llm_response = "NA."
|
|
|
192 |
final_ref["ai_judge"] = independent_ai_judge_score
|
193 |
|
194 |
end_t = time.time()
|
195 |
+
if user_timer == "Yes":
|
196 |
+
st.success(f"Using AI Judge. | Time: {end_t - begin_t} sec")
|
197 |
|
198 |
engineered_prompt = f"""
|
199 |
Based on the context: {ref_from_db_search}
|
|
|
206 |
begin_t = time.time()
|
207 |
answer = call_chatgpt(engineered_prompt)
|
208 |
end_t = time.time()
|
209 |
+
if user_timer == "Yes":
|
210 |
+
st.success(f"Final API Call. | Time: {end_t - begin_t} sec")
|
211 |
response = answer
|
212 |
|
213 |
# Display assistant response in chat message container
|