Spaces:
Sleeping
Sleeping
button added
Browse files
app.py
CHANGED
@@ -59,6 +59,7 @@ special_threshold = st.sidebar.number_input(
|
|
59 |
st.sidebar.success(
|
60 |
"The 'distances' score indicates the proximity of your question to our database questions (lower is better). The 'ai_judge' ranks the similarity between user's question and database answers independently (higher is better)."
|
61 |
)
|
|
|
62 |
clear_button = st.sidebar.button("Clear Conversation", key="clear")
|
63 |
if clear_button:
|
64 |
st.session_state.messages = []
|
@@ -114,99 +115,100 @@ with st.spinner("Loading, please be patient with us ... π"):
|
|
114 |
|
115 |
|
116 |
# React to user input
|
117 |
-
if
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
# special_threshold = st.sidebar.slider('How old are you?', 0, 0.6, 0.1) # 0.3
|
140 |
-
filtered_ref = ref[ref["distances"] < special_threshold]
|
141 |
-
if filtered_ref.shape[0] > 0:
|
142 |
-
st.success("There are highly relevant information in our database.")
|
143 |
-
ref_from_db_search = filtered_ref["answers"].str.cat(sep=" ")
|
144 |
-
final_ref = filtered_ref
|
145 |
-
else:
|
146 |
-
st.warning(
|
147 |
-
"The database may not have relevant information to help your question so please be aware of hallucinations."
|
148 |
)
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
begin_t = time.time()
|
155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
end_t = time.time()
|
157 |
-
st.success(f"
|
158 |
-
except:
|
159 |
-
st.warning("Sorry, the inference endpoint is temporarily down. π")
|
160 |
-
llm_response = "NA."
|
161 |
-
else:
|
162 |
-
st.warning(
|
163 |
-
"Apologies! We are in the progress of fine-tune the model, so it's currently unavailable. βοΈ"
|
164 |
-
)
|
165 |
-
llm_response = "NA"
|
166 |
|
167 |
-
|
168 |
-
|
169 |
-
final_ref = final_ref.reset_index()
|
170 |
|
171 |
-
|
172 |
-
if run_ai_judge == "Yes":
|
173 |
-
independent_ai_judge_score = []
|
174 |
-
begin_t = time.time()
|
175 |
-
for i in range(final_ref.shape[0]):
|
176 |
-
this_content = final_ref["answers"][i]
|
177 |
-
if len(this_content) > 3:
|
178 |
-
arr1 = openai_text_embedding(question)
|
179 |
-
arr2 = openai_text_embedding(this_content)
|
180 |
-
# this_score = calculate_sts_openai_score(question, this_content)
|
181 |
-
this_score = quantized_influence(arr1, arr2)
|
182 |
-
else:
|
183 |
-
this_score = 0
|
184 |
-
independent_ai_judge_score.append(this_score)
|
185 |
-
|
186 |
-
final_ref["ai_judge"] = independent_ai_judge_score
|
187 |
|
|
|
|
|
|
|
|
|
|
|
188 |
end_t = time.time()
|
189 |
-
st.success(f"
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
answer = call_chatgpt(engineered_prompt)
|
201 |
-
end_t = time.time()
|
202 |
-
st.success(f"Final API Call. | Time: {end_t - begin_t} sec")
|
203 |
-
response = answer
|
204 |
-
|
205 |
-
# Display assistant response in chat message container
|
206 |
-
with st.chat_message("assistant"):
|
207 |
-
with st.spinner("Wait for it..."):
|
208 |
-
st.markdown(response)
|
209 |
-
with st.expander("See reference:"):
|
210 |
-
st.table(final_ref)
|
211 |
-
# Add assistant response to chat history
|
212 |
-
st.session_state.messages.append({"role": "assistant", "content": response})
|
|
|
59 |
st.sidebar.success(
|
60 |
"The 'distances' score indicates the proximity of your question to our database questions (lower is better). The 'ai_judge' ranks the similarity between user's question and database answers independently (higher is better)."
|
61 |
)
|
62 |
+
submit_button = st.sidebar.button("Submit", type="primary")
|
63 |
clear_button = st.sidebar.button("Clear Conversation", key="clear")
|
64 |
if clear_button:
|
65 |
st.session_state.messages = []
|
|
|
115 |
|
116 |
|
117 |
# React to user input
|
118 |
+
if submit_button:
|
119 |
+
if prompt := st.chat_input(initial_input):
|
120 |
+
with st.spinner("Loading, please be patient with us ... π"):
|
121 |
+
# Display user message in chat message container
|
122 |
+
st.chat_message("user").markdown(prompt)
|
123 |
+
# Add user message to chat history
|
124 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
125 |
+
|
126 |
+
question = prompt
|
127 |
+
begin_t = time.time()
|
128 |
+
results = collection.query(query_texts=question, n_results=5)
|
129 |
+
end_t = time.time()
|
130 |
+
st.success(f"Query answser. | Time: {end_t - begin_t} sec")
|
131 |
+
idx = results["ids"][0]
|
132 |
+
idx = [int(i) for i in idx]
|
133 |
+
ref = pd.DataFrame(
|
134 |
+
{
|
135 |
+
"idx": idx,
|
136 |
+
"questions": [dataset["train"]["questions"][i] for i in idx],
|
137 |
+
"answers": [dataset["train"]["answers"][i] for i in idx],
|
138 |
+
"distances": results["distances"][0],
|
139 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
)
|
141 |
+
# special_threshold = st.sidebar.slider('How old are you?', 0, 0.6, 0.1) # 0.3
|
142 |
+
filtered_ref = ref[ref["distances"] < special_threshold]
|
143 |
+
if filtered_ref.shape[0] > 0:
|
144 |
+
st.success("There are highly relevant information in our database.")
|
145 |
+
ref_from_db_search = filtered_ref["answers"].str.cat(sep=" ")
|
146 |
+
final_ref = filtered_ref
|
147 |
+
else:
|
148 |
+
st.warning(
|
149 |
+
"The database may not have relevant information to help your question so please be aware of hallucinations."
|
150 |
+
)
|
151 |
+
ref_from_db_search = ref["answers"].str.cat(sep=" ")
|
152 |
+
final_ref = ref
|
153 |
+
|
154 |
+
if option == "YSA":
|
155 |
+
try:
|
156 |
+
begin_t = time.time()
|
157 |
+
llm_response = llama2_7b_ysa(question)
|
158 |
+
end_t = time.time()
|
159 |
+
st.success(f"Running LLM. | Time: {end_t - begin_t} sec")
|
160 |
+
except:
|
161 |
+
st.warning("Sorry, the inference endpoint is temporarily down. π")
|
162 |
+
llm_response = "NA."
|
163 |
+
else:
|
164 |
+
st.warning(
|
165 |
+
"Apologies! We are in the progress of fine-tune the model, so it's currently unavailable. βοΈ"
|
166 |
+
)
|
167 |
+
llm_response = "NA"
|
168 |
+
|
169 |
+
finetuned_llm_guess = ["from_llm", question, llm_response, 0]
|
170 |
+
final_ref.loc[-1] = finetuned_llm_guess
|
171 |
+
final_ref = final_ref.reset_index()
|
172 |
+
|
173 |
+
# add ai judge as additional rating
|
174 |
+
if run_ai_judge == "Yes":
|
175 |
+
independent_ai_judge_score = []
|
176 |
begin_t = time.time()
|
177 |
+
for i in range(final_ref.shape[0]):
|
178 |
+
this_content = final_ref["answers"][i]
|
179 |
+
if len(this_content) > 3:
|
180 |
+
arr1 = openai_text_embedding(question)
|
181 |
+
arr2 = openai_text_embedding(this_content)
|
182 |
+
# this_score = calculate_sts_openai_score(question, this_content)
|
183 |
+
this_score = quantized_influence(arr1, arr2)
|
184 |
+
else:
|
185 |
+
this_score = 0
|
186 |
+
independent_ai_judge_score.append(this_score)
|
187 |
+
|
188 |
+
final_ref["ai_judge"] = independent_ai_judge_score
|
189 |
+
|
190 |
end_t = time.time()
|
191 |
+
st.success(f"Using AI Judge. | Time: {end_t - begin_t} sec")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
|
193 |
+
engineered_prompt = f"""
|
194 |
+
Based on the context: {ref_from_db_search}
|
|
|
195 |
|
196 |
+
answer the user question: {question}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
|
198 |
+
Answer the question directly (don't say "based on the context, ...")
|
199 |
+
"""
|
200 |
+
|
201 |
+
begin_t = time.time()
|
202 |
+
answer = call_chatgpt(engineered_prompt)
|
203 |
end_t = time.time()
|
204 |
+
st.success(f"Final API Call. | Time: {end_t - begin_t} sec")
|
205 |
+
response = answer
|
206 |
+
|
207 |
+
# Display assistant response in chat message container
|
208 |
+
with st.chat_message("assistant"):
|
209 |
+
with st.spinner("Wait for it..."):
|
210 |
+
st.markdown(response)
|
211 |
+
with st.expander("See reference:"):
|
212 |
+
st.table(final_ref)
|
213 |
+
# Add assistant response to chat history
|
214 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|