Spaces:
Sleeping
Sleeping
Update utils/helper_functions.py
Browse files
utils/helper_functions.py
CHANGED
@@ -277,11 +277,12 @@ def quantized_influence(arr1: np.ndarray, arr2: np.ndarray, k: int = 16, use_dag
|
|
277 |
unique_values = np.unique(arr1_quantized)
|
278 |
|
279 |
# Compute the global average of quantized arr2
|
|
|
280 |
y_bar_global = np.mean(arr2_quantized)
|
281 |
|
282 |
# Compute weighted local averages and normalize
|
283 |
weighted_local_averages = [(np.mean(arr2_quantized[arr1_quantized == val]) - y_bar_global)**2 * len(arr2_quantized[arr1_quantized == val])**2 for val in unique_values]
|
284 |
-
qim = np.
|
285 |
|
286 |
if use_dagger:
|
287 |
# If use_dagger is True, compute local estimates and map them to unique quantized values
|
|
|
277 |
unique_values = np.unique(arr1_quantized)
|
278 |
|
279 |
# Compute the global average of quantized arr2
|
280 |
+
total_samples = len(arr2_quantized)
|
281 |
y_bar_global = np.mean(arr2_quantized)
|
282 |
|
283 |
# Compute weighted local averages and normalize
|
284 |
weighted_local_averages = [(np.mean(arr2_quantized[arr1_quantized == val]) - y_bar_global)**2 * len(arr2_quantized[arr1_quantized == val])**2 for val in unique_values]
|
285 |
+
qim = np.sum(weighted_local_averages) / (total_samples * np.std(arr2_quantized)) # Calculate the quantized influence measure
|
286 |
|
287 |
if use_dagger:
|
288 |
# If use_dagger is True, compute local estimates and map them to unique quantized values
|