Spaces:
Sleeping
Sleeping
from datetime import datetime | |
import streamlit as st | |
import os | |
from openai import OpenAI | |
class ChatBot: | |
def __init__(self): | |
self.client = OpenAI(api_key=os.environ["OPENAI_API_KEY"]) | |
self.history = [{"role": "system", "content": "You are a helpful assistant."}] | |
def generate_response(self, prompt: str) -> str: | |
self.history.append({"role": "user", "content": prompt}) | |
completion = self.client.chat.completions.create( | |
model="gpt-3.5-turbo", # NOTE: feel free to change it to gpt-4, or gpt-4o | |
messages=self.history | |
) | |
response = completion.choices[0].message.content | |
self.history.append({"role": "assistant", "content": response}) | |
return response | |
def get_history(self) -> list: | |
return self.history | |
# Credit: Time | |
def current_year(): | |
now = datetime.now() | |
return now.year | |
st.set_page_config(layout="wide") | |
st.title("Just chat! π€") | |
with st.sidebar: | |
with st.expander("Instruction Manual"): | |
st.markdown(""" | |
## OpenAI GPT-4 π€ Chatbot | |
This Streamlit app allows you to chat with GPT-4 model. The model GPT-4o is deprecated due to high cost and will only be turned on for special occasions. | |
### How to Use: | |
1. **Input**: Type your prompt into the chat input box labeled "What is up?". | |
2. **Response**: The app will display a response from GPT-4. | |
3. **Chat History**: Previous conversations will be shown on the app. | |
### Credits: | |
- **Developer**: [Yiqiao Yin](https://www.y-yin.io/) | [App URL](https://huggingface.co/spaces/eagle0504/gpt-4o-demo) | [LinkedIn](https://www.linkedin.com/in/yiqiaoyin/) | [YouTube](https://youtube.com/YiqiaoYin/) | |
Enjoy chatting with OpenAI's GPT-4 model! | |
""") | |
# Example: | |
with st.expander("Examples"): | |
st.success("Example: Explain what is supervised learning.") | |
st.success("Example: What is large language model?") | |
st.success("Example: How to conduct an AI experiment?") | |
st.success("Example: Write a tensorflow flow code with a 3-layer neural network model.") | |
# Add a button to clear the session state | |
if st.button("Clear Session"): | |
st.session_state.messages = [] | |
st.experimental_rerun() | |
# Donation | |
# stripe_payment_link = os.environ["STRIPE_PAYMENT_LINK"] | |
# st.markdown( | |
# f""" | |
# Want to support me? π Click here using this [link]({stripe_payment_link}). | |
# """ | |
# ) | |
# Credit: | |
current_year = current_year() # This will print the current year | |
st.markdown( | |
f""" | |
<h6 style='text-align: left;'>Copyright Β© 2010-{current_year} Present Yiqiao Yin</h6> | |
""", | |
unsafe_allow_html=True, | |
) | |
# Initialize chat history | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
# Ensure messages are a list of dictionaries | |
if not isinstance(st.session_state.messages, list): | |
st.session_state.messages = [] | |
if not all(isinstance(msg, dict) for msg in st.session_state.messages): | |
st.session_state.messages = [] | |
# Display chat messages from history on app rerun, excluding system messages | |
for message in st.session_state.messages: | |
if message["role"] != "system": # Skip displaying system messages | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
# React to user input | |
if prompt := st.chat_input("π Ask any question or feel free to use the examples provided in the left sidebar."): | |
# Display user message in chat message container | |
st.chat_message("user").markdown(prompt) | |
# Add a system message to the chat history, but don't display it | |
st.session_state.messages.append({"role": "system", "content": f"You are a helpful assistant. Year now is {current_year}"}) | |
# Add user message to chat history | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
# API Call | |
bot = ChatBot() | |
bot.history = st.session_state.messages.copy() # Update history from messages | |
response = bot.generate_response(prompt) | |
# Display assistant response in chat message container | |
with st.chat_message("assistant"): | |
st.markdown(response) | |
# Add assistant response to chat history | |
st.session_state.messages.append({"role": "assistant", "content": response}) | |