gpt-4o-demo / app.py
eagle0504's picture
Update app.py
fd0e171 verified
from datetime import datetime
import streamlit as st
import os
from openai import OpenAI
class ChatBot:
def __init__(self):
self.client = OpenAI(api_key=os.environ["OPENAI_API_KEY"])
self.history = [{"role": "system", "content": "You are a helpful assistant."}]
def generate_response(self, prompt: str) -> str:
self.history.append({"role": "user", "content": prompt})
completion = self.client.chat.completions.create(
model="gpt-3.5-turbo", # NOTE: feel free to change it to gpt-4, or gpt-4o
messages=self.history
)
response = completion.choices[0].message.content
self.history.append({"role": "assistant", "content": response})
return response
def get_history(self) -> list:
return self.history
# Credit: Time
def current_year():
now = datetime.now()
return now.year
st.set_page_config(layout="wide")
st.title("Just chat! πŸ€–")
with st.sidebar:
with st.expander("Instruction Manual"):
st.markdown("""
## OpenAI GPT-4 πŸ€– Chatbot
This Streamlit app allows you to chat with GPT-4 model. The model GPT-4o is deprecated due to high cost and will only be turned on for special occasions.
### How to Use:
1. **Input**: Type your prompt into the chat input box labeled "What is up?".
2. **Response**: The app will display a response from GPT-4.
3. **Chat History**: Previous conversations will be shown on the app.
### Credits:
- **Developer**: [Yiqiao Yin](https://www.y-yin.io/) | [App URL](https://huggingface.co/spaces/eagle0504/gpt-4o-demo) | [LinkedIn](https://www.linkedin.com/in/yiqiaoyin/) | [YouTube](https://youtube.com/YiqiaoYin/)
Enjoy chatting with OpenAI's GPT-4 model!
""")
# Example:
with st.expander("Examples"):
st.success("Example: Explain what is supervised learning.")
st.success("Example: What is large language model?")
st.success("Example: How to conduct an AI experiment?")
st.success("Example: Write a tensorflow flow code with a 3-layer neural network model.")
# Add a button to clear the session state
if st.button("Clear Session"):
st.session_state.messages = []
st.experimental_rerun()
# Donation
# stripe_payment_link = os.environ["STRIPE_PAYMENT_LINK"]
# st.markdown(
# f"""
# Want to support me? πŸ˜„ Click here using this [link]({stripe_payment_link}).
# """
# )
# Credit:
current_year = current_year() # This will print the current year
st.markdown(
f"""
<h6 style='text-align: left;'>Copyright Β© 2010-{current_year} Present Yiqiao Yin</h6>
""",
unsafe_allow_html=True,
)
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Ensure messages are a list of dictionaries
if not isinstance(st.session_state.messages, list):
st.session_state.messages = []
if not all(isinstance(msg, dict) for msg in st.session_state.messages):
st.session_state.messages = []
# Display chat messages from history on app rerun, excluding system messages
for message in st.session_state.messages:
if message["role"] != "system": # Skip displaying system messages
with st.chat_message(message["role"]):
st.markdown(message["content"])
# React to user input
if prompt := st.chat_input("πŸ˜‰ Ask any question or feel free to use the examples provided in the left sidebar."):
# Display user message in chat message container
st.chat_message("user").markdown(prompt)
# Add a system message to the chat history, but don't display it
st.session_state.messages.append({"role": "system", "content": f"You are a helpful assistant. Year now is {current_year}"})
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
# API Call
bot = ChatBot()
bot.history = st.session_state.messages.copy() # Update history from messages
response = bot.generate_response(prompt)
# Display assistant response in chat message container
with st.chat_message("assistant"):
st.markdown(response)
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": response})