streamlit-demo / app.py
eagle0504's picture
Update app.py
09f1f96 verified
raw
history blame
4.03 kB
import os
import openai
import streamlit as st
from langchain.agents import AgentType, initialize_agent, load_tools
from langchain.llms import OpenAI as l_OpenAI
from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForCausalLM
from helpers.foundation_models import *
import requests
# API Keys
OPENAI_API_KEY = os.environ["OPENAI_API_KEY"]
SERPAPI_API_KEY = os.environ["SERPAPI_API_KEY"]
openai_client = openai.OpenAI(api_key=OPENAI_API_KEY)
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Sidebar
with st.expander("Instructions"):
st.sidebar.markdown(
r"""
# 🌟 Streamlit + Hugging Face Demo πŸ€–
## Introduction πŸ“–
This demo showcases how to interact with Large Language Models (LLMs) on Hugging Face using Streamlit.
"""
)
option = st.sidebar.selectbox(
"Which task do you want to do?",
("Sentiment Analysis", "Medical Summarization", "Llama2 on YSA", "ChatGPT", "ChatGPT (with Google)"),
)
clear_button = st.sidebar.button("Clear Conversation", key="clear")
st.sidebar.write("---")
st.sidebar.markdown("Yiqiao Yin: [Site](https://www.y-yin.io/) | [LinkedIn](https://www.linkedin.com/in/yiqiaoyin/)")
# Reset everything
if clear_button:
st.session_state.messages = []
# React to user input
if prompt := st.chat_input("What is up?"):
# Display user message in chat message container
st.chat_message("user").markdown(prompt)
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
# Execute options
with st.spinner("Wait for it..."):
if option == "Sentiment Analysis":
pipe_sentiment_analysis = pipeline("sentiment-analysis")
if prompt:
out = pipe_sentiment_analysis(prompt)
final_response = f"""
Prompt: {prompt}
Sentiment: {out[0]["label"]}
Score: {out[0]["score"]}
"""
elif option == "Medical Summarization":
pipe_summarization = pipeline(
"summarization", model="Falconsai/medical_summarization"
)
if prompt:
out = pipe_summarization(prompt)
final_response = out[0]["summary_text"]
elif option == "Llama2 on YSA":
if prompt:
try:
out = llama2_7b_ysa(prompt)
engineered_prompt = f"""
The user asked the question: {prompt}
We have found relevant content: {out}
Answer the user question based on the above content in paragraphs.
"""
final_response = call_chatgpt(query=engineered_prompt)
except:
final_response = "Sorry, the inference endpoint is temporarily down. πŸ˜”"
elif option == "ChatGPT":
if prompt:
out = call_chatgpt(query=prompt)
final_response = out
elif option == "ChatGPT (with Google)":
if prompt:
ans_langchain = call_langchain(prompt)
prompt = f"""
Based on the internet search results: {ans_langchain};
Answer the user question: {prompt}
"""
out = call_chatgpt(query=prompt)
final_response = out
else:
final_response = ""
response = f"{final_response}"
# Display assistant response in chat message container
with st.chat_message("assistant"):
st.markdown(response)
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": response})