eagle0504 commited on
Commit
1f7869d
1 Parent(s): 1e3ff64

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -17
app.py CHANGED
@@ -14,24 +14,24 @@ SERPAPI_API_KEY = os.environ["SERPAPI_API_KEY"]
14
  openai_client = openai.OpenAI(api_key=OPENAI_API_KEY)
15
 
16
 
17
- tokenizer = AutoTokenizer.from_pretrained("eagle0504/llama-2-7b-miniguanaco")
18
- model = AutoModelForCausalLM.from_pretrained("eagle0504/llama-2-7b-miniguanaco")
19
 
20
 
21
- def generate_response_from_llama2(query):
22
 
23
- # Tokenize the input text
24
- input_ids = tokenizer.encode(query, return_tensors="pt")
25
 
26
- # Generate a response
27
- # Adjust the parameters like max_length according to your needs
28
- output = model.generate(input_ids, max_length=50, num_return_sequences=1, temperature=0.7)
29
 
30
- # Decode the output to human-readable text
31
- generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
32
 
33
- # output
34
- return generated_text
35
 
36
 
37
  # Initialize chat history
@@ -59,7 +59,7 @@ with st.expander("Instructions"):
59
 
60
  option = st.sidebar.selectbox(
61
  "Which task do you want to do?",
62
- ("Sentiment Analysis", "Medical Summarization", "Llama2", "ChatGPT", "ChatGPT (with Google)"),
63
  )
64
 
65
 
@@ -99,10 +99,10 @@ if prompt := st.chat_input("What is up?"):
99
  if prompt:
100
  out = pipe_summarization(prompt)
101
  doc = out[0]["summary_text"]
102
- elif option == "Llama2":
103
- if prompt:
104
- out = generate_response_from_llama2(query=prompt)
105
- doc = out
106
  elif option == "ChatGPT":
107
  if prompt:
108
  out = call_chatgpt(query=prompt)
 
14
  openai_client = openai.OpenAI(api_key=OPENAI_API_KEY)
15
 
16
 
17
+ # tokenizer = AutoTokenizer.from_pretrained("eagle0504/llama-2-7b-miniguanaco")
18
+ # model = AutoModelForCausalLM.from_pretrained("eagle0504/llama-2-7b-miniguanaco")
19
 
20
 
21
+ # def generate_response_from_llama2(query):
22
 
23
+ # # Tokenize the input text
24
+ # input_ids = tokenizer.encode(query, return_tensors="pt")
25
 
26
+ # # Generate a response
27
+ # # Adjust the parameters like max_length according to your needs
28
+ # output = model.generate(input_ids, max_length=50, num_return_sequences=1, temperature=0.7)
29
 
30
+ # # Decode the output to human-readable text
31
+ # generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
32
 
33
+ # # output
34
+ # return generated_text
35
 
36
 
37
  # Initialize chat history
 
59
 
60
  option = st.sidebar.selectbox(
61
  "Which task do you want to do?",
62
+ ("Sentiment Analysis", "Medical Summarization", "ChatGPT", "ChatGPT (with Google)"),
63
  )
64
 
65
 
 
99
  if prompt:
100
  out = pipe_summarization(prompt)
101
  doc = out[0]["summary_text"]
102
+ # elif option == "Llama2":
103
+ # if prompt:
104
+ # out = generate_response_from_llama2(query=prompt)
105
+ # doc = out
106
  elif option == "ChatGPT":
107
  if prompt:
108
  out = call_chatgpt(query=prompt)