Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,7 @@ import streamlit as st
|
|
5 |
from langchain.agents import AgentType, initialize_agent, load_tools
|
6 |
from langchain.llms import OpenAI as l_OpenAI
|
7 |
from transformers import pipeline
|
|
|
8 |
|
9 |
from helpers.foundation_models import *
|
10 |
|
@@ -13,6 +14,26 @@ SERPAPI_API_KEY = os.environ["SERPAPI_API_KEY"]
|
|
13 |
openai_client = openai.OpenAI(api_key=OPENAI_API_KEY)
|
14 |
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
# Initialize chat history
|
17 |
if "messages" not in st.session_state:
|
18 |
st.session_state.messages = []
|
@@ -38,7 +59,7 @@ with st.expander("Instructions"):
|
|
38 |
|
39 |
option = st.sidebar.selectbox(
|
40 |
"Which task do you want to do?",
|
41 |
-
("Sentiment Analysis", "Medical Summarization", "ChatGPT", "ChatGPT (with Google)"),
|
42 |
)
|
43 |
|
44 |
|
@@ -78,6 +99,10 @@ if prompt := st.chat_input("What is up?"):
|
|
78 |
if prompt:
|
79 |
out = pipe_summarization(prompt)
|
80 |
doc = out[0]["summary_text"]
|
|
|
|
|
|
|
|
|
81 |
elif option == "ChatGPT":
|
82 |
if prompt:
|
83 |
out = call_chatgpt(query=prompt)
|
|
|
5 |
from langchain.agents import AgentType, initialize_agent, load_tools
|
6 |
from langchain.llms import OpenAI as l_OpenAI
|
7 |
from transformers import pipeline
|
8 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
9 |
|
10 |
from helpers.foundation_models import *
|
11 |
|
|
|
14 |
openai_client = openai.OpenAI(api_key=OPENAI_API_KEY)
|
15 |
|
16 |
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained("eagle0504/llama-2-7b-miniguanaco")
|
18 |
+
model = AutoModelForCausalLM.from_pretrained("eagle0504/llama-2-7b-miniguanaco")
|
19 |
+
|
20 |
+
|
21 |
+
def generate_response_from_llama2(query):
|
22 |
+
|
23 |
+
# Tokenize the input text
|
24 |
+
input_ids = tokenizer.encode(query, return_tensors="pt")
|
25 |
+
|
26 |
+
# Generate a response
|
27 |
+
# Adjust the parameters like max_length according to your needs
|
28 |
+
output = model.generate(input_ids, max_length=50, num_return_sequences=1, temperature=0.7)
|
29 |
+
|
30 |
+
# Decode the output to human-readable text
|
31 |
+
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
32 |
+
|
33 |
+
# output
|
34 |
+
return generated_text
|
35 |
+
|
36 |
+
|
37 |
# Initialize chat history
|
38 |
if "messages" not in st.session_state:
|
39 |
st.session_state.messages = []
|
|
|
59 |
|
60 |
option = st.sidebar.selectbox(
|
61 |
"Which task do you want to do?",
|
62 |
+
("Sentiment Analysis", "Medical Summarization", "Llama2", "ChatGPT", "ChatGPT (with Google)"),
|
63 |
)
|
64 |
|
65 |
|
|
|
99 |
if prompt:
|
100 |
out = pipe_summarization(prompt)
|
101 |
doc = out[0]["summary_text"]
|
102 |
+
elif option == "Llama2"
|
103 |
+
if prompt:
|
104 |
+
out = generate_response_from_llama2(query=prompt)
|
105 |
+
doc = out
|
106 |
elif option == "ChatGPT":
|
107 |
if prompt:
|
108 |
out = call_chatgpt(query=prompt)
|