Spaces:
Running
Running
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
import plotly.express as px | |
from datasets import load_dataset | |
import folium | |
from streamlit_folium import st_folium | |
from geopy.geocoders import Nominatim | |
# Initialize geolocator | |
geolocator = Nominatim(user_agent="geoapiExercises") | |
# Hugging Face Datasets | |
def load_data(): | |
network_insights = load_dataset("infinite-dataset-hub/5GNetworkOptimization", split="train") | |
return network_insights.to_pandas() | |
# Load Datasets | |
network_insights = load_data() | |
# Title | |
st.title("Smart Network Infrastructure Planner") | |
st.sidebar.header("Input Parameters") | |
# User Inputs from Sidebar | |
budget = st.sidebar.number_input("Total Budget (in $1000s):", min_value=10, max_value=1000, step=10) | |
priority_area = st.sidebar.selectbox("Priority Area:", ["Rural", "Urban", "Suburban"]) | |
signal_threshold = st.sidebar.slider("Signal Strength Threshold (dBm):", min_value=-120, max_value=-30, value=-80) | |
terrain_weight = st.sidebar.slider("Terrain Difficulty Weight:", min_value=0.0, max_value=1.0, value=0.5) | |
cost_weight = st.sidebar.slider("Cost Weight:", min_value=0.0, max_value=1.0, value=0.5) | |
include_human_readable = st.sidebar.checkbox("Include Human-Readable Info", value=True) | |
# Display Dataset Options | |
data_to_view = st.sidebar.selectbox("Select Dataset to View:", ["Network Insights", "Filtered Terrain Data"]) | |
# Terrain and Connectivity Analysis Section | |
st.header("Terrain and Connectivity Analysis") | |
# Simulate Terrain Data | |
def generate_terrain_data(): | |
np.random.seed(42) | |
data = { | |
"Region": [f"Region-{i}" for i in range(1, 11)], | |
"Latitude": np.random.uniform(30.0, 50.0, size=10), | |
"Longitude": np.random.uniform(-120.0, -70.0, size=10), | |
"Terrain Difficulty (0-10)": np.random.randint(1, 10, size=10), | |
"Signal Strength (dBm)": np.random.randint(-120, -30, size=10), | |
"Cost ($1000s)": np.random.randint(50, 200, size=10), | |
"Priority Area": np.random.choice(["Rural", "Urban", "Suburban"], size=10), | |
"Description": [ | |
"Flat area with minimal obstacles", | |
"Hilly terrain, moderate construction difficulty", | |
"Dense urban area with high costs", | |
"Suburban area, balanced terrain", | |
"Mountainous region, challenging setup", | |
"Remote rural area, sparse population", | |
"Coastal area, potential for high signal interference", | |
"Industrial zone, requires robust infrastructure", | |
"Dense forest region, significant signal attenuation", | |
"Open plains, optimal for cost-effective deployment" | |
] | |
} | |
return pd.DataFrame(data) | |
terrain_data = generate_terrain_data() | |
# Reverse Geocoding Function | |
def get_location_name(lat, lon): | |
try: | |
location = geolocator.reverse((lat, lon), exactly_one=True) | |
return location.address if location else "Unknown Location" | |
except Exception as e: | |
return "Error: Unable to fetch location" | |
# Add Location Name to Filtered Data | |
if include_human_readable: | |
filtered_data = terrain_data[ | |
(terrain_data["Signal Strength (dBm)"] >= signal_threshold) & | |
(terrain_data["Cost ($1000s)"] <= budget) & | |
(terrain_data["Priority Area"] == priority_area) | |
] | |
filtered_data["Location Name"] = filtered_data.apply( | |
lambda row: get_location_name(row["Latitude"], row["Longitude"]), axis=1 | |
) | |
else: | |
filtered_data = terrain_data[ | |
(terrain_data["Signal Strength (dBm)"] >= signal_threshold) & | |
(terrain_data["Cost ($1000s)"] <= budget) & | |
(terrain_data["Priority Area"] == priority_area) | |
] | |
# Add Composite Score for Ranking | |
filtered_data["Composite Score"] = ( | |
(1 - terrain_weight) * filtered_data["Signal Strength (dBm)"] + | |
(terrain_weight) * (10 - filtered_data["Terrain Difficulty (0-10)"]) - | |
(cost_weight) * filtered_data["Cost ($1000s)"] | |
) | |
# Display Selected Dataset | |
if data_to_view == "Network Insights": | |
st.subheader("Network Insights Dataset") | |
st.dataframe(network_insights) | |
elif data_to_view == "Filtered Terrain Data": | |
st.subheader("Filtered Terrain Data") | |
columns_to_display = [ | |
"Region", "Location Name", "Priority Area", "Signal Strength (dBm)", | |
"Cost ($1000s)", "Terrain Difficulty (0-10)", "Description", "Composite Score" | |
] if include_human_readable else [ | |
"Region", "Priority Area", "Signal Strength (dBm)", "Cost ($1000s)", "Terrain Difficulty (0-10)", "Description", "Composite Score" | |
] | |
st.dataframe(filtered_data[columns_to_display]) | |
# Map Visualization | |
st.header("Geographical Map of Regions") | |
if not filtered_data.empty: | |
map_center = [filtered_data["Latitude"].mean(), filtered_data["Longitude"].mean()] | |
region_map = folium.Map(location=map_center, zoom_start=6) | |
for _, row in filtered_data.iterrows(): | |
folium.Marker( | |
location=[row["Latitude"], row["Longitude"]], | |
popup=( | |
f"<b>Region:</b> {row['Region']}<br>" | |
f"<b>Location:</b> {row.get('Location Name', 'N/A')}<br>" | |
f"<b>Description:</b> {row['Description']}<br>" | |
f"<b>Signal Strength:</b> {row['Signal Strength (dBm)']} dBm<br>" | |
f"<b>Cost:</b> ${row['Cost ($1000s)']}k<br>" | |
f"<b>Terrain Difficulty:</b> {row['Terrain Difficulty (0-10)']}" | |
), | |
icon=folium.Icon(color="blue", icon="info-sign") | |
).add_to(region_map) | |
st_folium(region_map, width=700, height=500) | |
else: | |
st.write("No regions match the selected criteria.") | |
# Visualization | |
fig = px.scatter( | |
filtered_data, | |
x="Cost ($1000s)", | |
y="Signal Strength (dBm)", | |
size="Terrain Difficulty (0-10)", | |
color="Region", | |
title="Signal Strength vs. Cost", | |
labels={ | |
"Cost ($1000s)": "Cost in $1000s", | |
"Signal Strength (dBm)": "Signal Strength in dBm", | |
}, | |
) | |
st.plotly_chart(fig) | |
# Recommendation Engine | |
st.header("Deployment Recommendations") | |
def recommend_deployment(data): | |
if data.empty: | |
return "No viable deployment regions within the specified parameters." | |
best_region = data.loc[data["Composite Score"].idxmax()] | |
return f"Recommended Region: {best_region['Region']} with Composite Score: {best_region['Composite Score']:.2f}, Signal Strength: {best_region['Signal Strength (dBm)']} dBm, Terrain Difficulty: {best_region['Terrain Difficulty (0-10)']}, and Estimated Cost: ${best_region['Cost ($1000s)']}k\nDescription: {best_region['Description']}\nLocation Name: {best_region.get('Location Name', 'N/A')}" | |
recommendation = recommend_deployment(filtered_data) | |
st.subheader(recommendation) | |
# Footer | |
st.sidebar.markdown("---") | |
st.sidebar.markdown( | |
"**Developed for Hackathon using Hugging Face Infinite Dataset Hub**\n\n[Visit Hugging Face](https://huggingface.co)") | |