Spaces:
Sleeping
Sleeping
Commit
·
f9746d7
1
Parent(s):
1ef90eb
Update app.py
Browse files
app.py
CHANGED
@@ -12,6 +12,22 @@ from langchain.chains import LLMChain, SequentialChain
|
|
12 |
from textwrap import dedent
|
13 |
import google.generativeai as genai
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
# Tool import
|
16 |
from crewai.tools.gemini_tools import GeminiSearchTools
|
17 |
from langchain.tools.yahoo_finance_news import YahooFinanceNewsTool
|
@@ -319,6 +335,87 @@ bot_inputs = [
|
|
319 |
chatbot_component
|
320 |
]
|
321 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
322 |
|
323 |
# Interface =============================================
|
324 |
|
|
|
12 |
from textwrap import dedent
|
13 |
import google.generativeai as genai
|
14 |
|
15 |
+
|
16 |
+
import yfinance as yf
|
17 |
+
from pypfopt.discrete_allocation import DiscreteAllocation, get_latest_prices
|
18 |
+
from pypfopt import EfficientFrontier
|
19 |
+
from pypfopt import risk_models
|
20 |
+
from pypfopt import expected_returns
|
21 |
+
from pypfopt import plotting
|
22 |
+
import copy
|
23 |
+
import numpy as np
|
24 |
+
import pandas as pd
|
25 |
+
import plotly.express as px
|
26 |
+
import matplotlib.pyplot as plt
|
27 |
+
from datetime import datetime
|
28 |
+
import datetime
|
29 |
+
|
30 |
+
|
31 |
# Tool import
|
32 |
from crewai.tools.gemini_tools import GeminiSearchTools
|
33 |
from langchain.tools.yahoo_finance_news import YahooFinanceNewsTool
|
|
|
335 |
chatbot_component
|
336 |
]
|
337 |
|
338 |
+
# Portfolio Analysis +++++++++++++++++++++++++++++++++++
|
339 |
+
|
340 |
+
def plot_cum_returns(data, title):
|
341 |
+
daily_cum_returns = 1 + data.dropna().pct_change()
|
342 |
+
daily_cum_returns = daily_cum_returns.cumprod()*100
|
343 |
+
fig = px.line(daily_cum_returns, title=title)
|
344 |
+
return fig
|
345 |
+
|
346 |
+
def plot_efficient_frontier_and_max_sharpe(mu, S):
|
347 |
+
# Optimize portfolio for max Sharpe ratio and plot it out with efficient frontier curve
|
348 |
+
ef = EfficientFrontier(mu, S)
|
349 |
+
fig, ax = plt.subplots(figsize=(6,4))
|
350 |
+
ef_max_sharpe = copy.deepcopy(ef)
|
351 |
+
plotting.plot_efficient_frontier(ef, ax=ax, show_assets=False)
|
352 |
+
# Find the max sharpe portfolio
|
353 |
+
ef_max_sharpe.max_sharpe(risk_free_rate=0.02)
|
354 |
+
ret_tangent, std_tangent, _ = ef_max_sharpe.portfolio_performance()
|
355 |
+
ax.scatter(std_tangent, ret_tangent, marker="*", s=100, c="r", label="Max Sharpe")
|
356 |
+
# Generate random portfolios with random weights
|
357 |
+
n_samples = 1000
|
358 |
+
w = np.random.dirichlet(np.ones(ef.n_assets), n_samples)
|
359 |
+
rets = w.dot(ef.expected_returns)
|
360 |
+
stds = np.sqrt(np.diag(w @ ef.cov_matrix @ w.T))
|
361 |
+
sharpes = rets / stds
|
362 |
+
ax.scatter(stds, rets, marker=".", c=sharpes, cmap="viridis_r")
|
363 |
+
# Output
|
364 |
+
ax.legend()
|
365 |
+
return fig
|
366 |
+
|
367 |
+
def output_results(start_date, end_date, tickers_string):
|
368 |
+
tickers = tickers_string.split(',')
|
369 |
+
|
370 |
+
# Get Stock Prices
|
371 |
+
stocks_df = yf.download(tickers, start=start_date, end=end_date)['Adj Close']
|
372 |
+
|
373 |
+
# Plot Individual Stock Prices
|
374 |
+
fig_indiv_prices = px.line(stocks_df, title='Price of Individual Stocks')
|
375 |
+
|
376 |
+
# Plot Individual Cumulative Returns
|
377 |
+
fig_cum_returns = plot_cum_returns(stocks_df, 'Cumulative Returns of Individual Stocks Starting with $100')
|
378 |
+
|
379 |
+
# Calculatge and Plot Correlation Matrix between Stocks
|
380 |
+
corr_df = stocks_df.corr().round(2)
|
381 |
+
fig_corr = px.imshow(corr_df, text_auto=True, title = 'Correlation between Stocks')
|
382 |
+
|
383 |
+
# Calculate expected returns and sample covariance matrix for portfolio optimization later
|
384 |
+
mu = expected_returns.mean_historical_return(stocks_df)
|
385 |
+
S = risk_models.sample_cov(stocks_df)
|
386 |
+
|
387 |
+
# Plot efficient frontier curve
|
388 |
+
fig_efficient_frontier = plot_efficient_frontier_and_max_sharpe(mu, S)
|
389 |
+
|
390 |
+
# Get optimized weights
|
391 |
+
ef = EfficientFrontier(mu, S)
|
392 |
+
ef.max_sharpe(risk_free_rate=0.04)
|
393 |
+
weights = ef.clean_weights()
|
394 |
+
expected_annual_return, annual_volatility, sharpe_ratio = ef.portfolio_performance()
|
395 |
+
|
396 |
+
expected_annual_return, annual_volatility, sharpe_ratio = '{}%'.format((expected_annual_return*100).round(2)), \
|
397 |
+
'{}%'.format((annual_volatility*100).round(2)), \
|
398 |
+
'{}%'.format((sharpe_ratio*100).round(2))
|
399 |
+
|
400 |
+
weights_df = pd.DataFrame.from_dict(weights, orient = 'index')
|
401 |
+
weights_df = weights_df.reset_index()
|
402 |
+
weights_df.columns = ['Tickers', 'Weights']
|
403 |
+
|
404 |
+
# Calculate returns of portfolio with optimized weights
|
405 |
+
stocks_df['Optimized Portfolio'] = 0
|
406 |
+
for ticker, weight in weights.items():
|
407 |
+
stocks_df['Optimized Portfolio'] += stocks_df[ticker]*weight
|
408 |
+
|
409 |
+
# Plot Cumulative Returns of Optimized Portfolio
|
410 |
+
fig_cum_returns_optimized = plot_cum_returns(stocks_df['Optimized Portfolio'], 'Cumulative Returns of Optimized Portfolio Starting with $100')
|
411 |
+
|
412 |
+
return fig_cum_returns_optimized, weights_df, fig_efficient_frontier, fig_corr, \
|
413 |
+
expected_annual_return, annual_volatility, sharpe_ratio, fig_indiv_prices, fig_cum_returns
|
414 |
+
|
415 |
+
|
416 |
+
|
417 |
+
|
418 |
+
|
419 |
|
420 |
# Interface =============================================
|
421 |
|