Lokahi_data / app.py
eaglelandsonce's picture
Update app.py
d202149 verified
raw
history blame
9.25 kB
import streamlit as st
import pandas as pd
import numpy as np
import csv
import io
import random
from datetime import datetime, timedelta
# Seed for reproducibility
np.random.seed(42)
# Function to generate synthetic BreastCancer data
def generate_breast_cancer_data(num_patients):
primary_keys = [f"PPK_{i+1:05d}" for i in range(num_patients)]
ages = np.random.randint(30, 80, size=num_patients)
menopausal_status = ["Post-menopausal" if age >= 50 else "Pre-menopausal" for age in ages]
tumor_sizes = np.round(np.random.lognormal(mean=0.7, sigma=0.5, size=num_patients), 2)
lymph_nodes = np.random.choice(["Positive", "Negative"], size=num_patients, p=[0.4, 0.6])
tumor_grades = np.random.choice([1, 2, 3], size=num_patients, p=[0.3, 0.5, 0.2])
tumor_stages = np.random.choice(["I", "II", "III", "IV"], size=num_patients, p=[0.4, 0.3, 0.2, 0.1])
er_status = np.random.choice(["Positive", "Negative"], size=num_patients, p=[0.75, 0.25])
pr_status = np.random.choice(["Positive", "Negative"], size=num_patients, p=[0.7, 0.3])
her2_status = np.random.choice(["Positive", "Negative"], size=num_patients, p=[0.3, 0.7])
ki67_levels = np.random.choice(["High", "Low"], size=num_patients, p=[0.6, 0.4])
tnbc_status = ["Positive" if er == "Negative" and pr == "Negative" and her2 == "Negative" else "Negative" for er, pr, her2 in zip(er_status, pr_status, her2_status)]
brca_mutation = np.random.choice(["Positive", "Negative"], size=num_patients, p=[0.1, 0.9])
overall_health = np.random.choice(["Good", "Poor"], size=num_patients, p=[0.7, 0.3])
genomic_score = np.random.choice(["Low", "Intermediate", "High", "N/A"], size=num_patients, p=[0.3, 0.2, 0.1, 0.4])
treatments = np.random.choice(["Surgery", "Chemotherapy", "Radiation Therapy"], size=num_patients)
return pd.DataFrame({
"PRIMARY_PERSON_KEY": primary_keys,
"Age": ages,
"Menopausal Status": menopausal_status,
"Tumor Size (cm)": tumor_sizes,
"Lymph Node Involvement": lymph_nodes,
"Tumor Grade": tumor_grades,
"Tumor Stage": tumor_stages,
"ER Status": er_status,
"PR Status": pr_status,
"HER2 Status": her2_status,
"Ki-67 Level": ki67_levels,
"TNBC Status": tnbc_status,
"BRCA Mutation": brca_mutation,
"Overall Health": overall_health,
"Genomic Recurrence Score": genomic_score,
"Treatment": treatments
})
# Function to generate Members from BreastCancer
def generate_members_from_breast_cancer(breast_cancer_df):
return pd.DataFrame({
"MEMBER_ID": breast_cancer_df["PRIMARY_PERSON_KEY"],
"PRIMARY_PERSON_KEY": breast_cancer_df["PRIMARY_PERSON_KEY"],
"MEM_GENDER": ["F"] * len(breast_cancer_df),
"MEM_ETHNICITY": np.random.choice(["Hispanic", "Non-Hispanic", None], len(breast_cancer_df)),
"MEM_RACE": np.random.choice(["White", "Black", "Asian", None], len(breast_cancer_df)),
"MEM_STATE": np.random.choice(["MI", "HI", "CA"], len(breast_cancer_df)),
"MEM_ZIP3": np.random.randint(100, 999, len(breast_cancer_df)),
})
# Function to generate Enrollments from BreastCancer
def generate_enrollments_from_breast_cancer(breast_cancer_df):
return pd.DataFrame({
"PRIMARY_PERSON_KEY": breast_cancer_df["PRIMARY_PERSON_KEY"],
"MEM_STAT": np.random.choice(["ACTIVE", "INACTIVE"], len(breast_cancer_df)),
"PAYER_LOB": np.random.choice(["MEDICAID", "COMMERCIAL", "MEDICARE"], len(breast_cancer_df)),
"PAYER_TYPE": np.random.choice(["PPO", "HMO"], len(breast_cancer_df)),
"RELATION": np.random.choice(["SUBSCRIBER", "DEPENDENT"], len(breast_cancer_df)),
})
# Function to generate Services from BreastCancer
def generate_services(num_services, primary_keys):
return pd.DataFrame({
"PRIMARY_PERSON_KEY": np.random.choice(primary_keys, num_services),
"SERVICE_SETTING": np.random.choice(["OUTPATIENT", "INPATIENT"], num_services),
"PROC_CODE": np.random.randint(1000, 9999, num_services),
"SERVICE_DATE": pd.date_range(start="2023-01-01", periods=num_services).to_numpy(),
"AMOUNT_BILLED": np.random.uniform(500, 15000, num_services),
"AMOUNT_PAID": np.random.uniform(500, 15000, num_services),
"CLAIM_STATUS": np.random.choice(["PAID", "DENIED", "PENDING"], num_services),
"RELATION": np.random.choice(["SUBSCRIBER", "DEPENDENT"], num_services),
})
# Function to generate Providers
def generate_providers(num_providers):
return pd.DataFrame({
"PROVIDER_ID": [f"PROV_{i+1:05d}" for i in range(num_providers)],
"PROV_NAME": np.random.choice(["Clinic A", "Clinic B", "Clinic C"], num_providers),
"PROV_STATE": np.random.choice(["MI", "HI", "CA"], num_providers),
"PROV_ZIP": np.random.randint(10000, 99999, num_providers),
"PROV_SPECIALTY": np.random.choice(["Oncology", "Radiology", "Surgery"], num_providers),
"PROV_TAXONOMY": np.random.choice(["208100000X", "207RE0101X"], num_providers),
})
# Function to generate wearable data
def generate_wearable_data(num_patients, num_measurements, start_datetime, time_interval, cancer_rate, chemo_brain_effect, primary_keys):
num_cancer_patients = int((cancer_rate / 100) * num_patients)
cancer_patients = set(random.sample(primary_keys, num_cancer_patients))
baseline_activity = 2000
baseline_heart_rate = 80
baseline_o2 = 98.2
activity_reduction_factor = (100 - chemo_brain_effect) / 100.0
chemo_heart_rate_increase = 5
data_rows = []
timestamps = [start_datetime + i * time_interval for i in range(num_measurements)]
for pkey in primary_keys:
is_cancer = pkey in cancer_patients
for ts in timestamps:
activity_var = random.randint(-300, 300)
hr_var = random.randint(-3, 3)
o2_var = random.uniform(-0.3, 0.3)
if is_cancer:
activity = int((baseline_activity + activity_var) * activity_reduction_factor)
heart_rate = baseline_heart_rate + hr_var + chemo_heart_rate_increase
else:
activity = baseline_activity + activity_var
heart_rate = baseline_heart_rate + hr_var
o2_sat = baseline_o2 + o2_var
activity = max(activity, 0)
heart_rate = max(heart_rate, 50)
o2_sat = max(o2_sat, 90.0)
data_rows.append([pkey, ts.strftime("%Y-%m-%d %H:%M:%S"), activity, heart_rate, round(o2_sat, 1)])
return pd.DataFrame(data_rows, columns=["PRIMARY_PERSON_KEY", "Measurement_Timestamp", "Activity_Level", "Heart_Rate", "O2_Saturation"])
# Main Streamlit App
st.title("Synthetic Medical Data Generator with Wearable Data")
# Sliders
num_patients = st.slider("Number of Breast Cancer Patients to Generate", 10, 1000, 100)
num_measurements = st.slider("Measurements per Patient (Wearable Data)", 1, 100, 10)
num_services = st.slider("Number of Services to Generate", 10, 2000, 500)
num_providers = st.slider("Number of Providers to Generate", 10, 500, 100)
start_date = st.date_input("Wearable Data Start Date", value=datetime(2024, 12, 1))
start_time = st.time_input("Wearable Data Start Time", value=datetime(2024, 12, 1, 8, 0).time())
cancer_rate = st.slider("Percentage of Patients with Cancer (Wearable Data)", 0, 100, 30)
chemo_brain_effect = st.slider("Chemo Brain Impact on Activity Level (in % reduction)", 0, 50, 20)
if st.button("Generate Data"):
primary_keys = [f"PPK_{i+1:05d}" for i in range(num_patients)]
wearable_start_datetime = datetime.combine(start_date, start_time)
breast_cancer_df = generate_breast_cancer_data(num_patients)
members_df = generate_members_from_breast_cancer(breast_cancer_df)
enrollments_df = generate_enrollments_from_breast_cancer(breast_cancer_df)
services_df = generate_services(num_services, primary_keys)
providers_df = generate_providers(num_providers)
wearable_data = generate_wearable_data(
num_patients, num_measurements, wearable_start_datetime, timedelta(hours=1), cancer_rate, chemo_brain_effect, primary_keys
)
st.subheader("Breast Cancer Data")
st.dataframe(breast_cancer_df.head())
st.download_button("Download Breast Cancer Data", breast_cancer_df.to_csv(index=False), "breast_cancer.csv")
st.subheader("Members Data")
st.dataframe(members_df.head())
st.download_button("Download Members Data", members_df.to_csv(index=False), "members.csv")
st.subheader("Enrollments Data")
st.dataframe(enrollments_df.head())
st.download_button("Download Enrollments Data", enrollments_df.to_csv(index=False), "enrollments.csv")
st.subheader("Services Data")
st.dataframe(services_df.head())
st.download_button("Download Services Data", services_df.to_csv(index=False), "services.csv")
st.subheader("Providers Data")
st.dataframe(providers_df.head())
st.download_button("Download Providers Data", providers_df.to_csv(index=False), "providers.csv")
st.subheader("Wearable Data")
st.dataframe(wearable_data.head())
st.download_button("Download Wearable Data", wearable_data.to_csv(index=False), "wearable_data.csv")