eaglelandsonce commited on
Commit
8f89163
1 Parent(s): 95a0a03

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -5
app.py CHANGED
@@ -29,7 +29,7 @@ def generate_members(num_members):
29
  primary_keys = [f"PPK_{i+1:05d}" for i in range(num_members)]
30
  members_data = {
31
  "MEM_ETHNICITY": np.random.choice(["Hispanic", "Non-Hispanic", None], num_members),
32
- "MEM_GENDER": ["F"] * num_members,
33
  "MEM_MSA_NAME": np.random.choice(["DETROIT", "HONOLULU", "LOS ANGELES"], num_members),
34
  "MEM_RACE": np.random.choice(["White", "Black", "Asian", None], num_members),
35
  "MEM_STATE": np.random.choice(["MI", "HI", "CA"], num_members),
@@ -70,8 +70,10 @@ def generate_services(num_services, primary_keys):
70
  return pd.DataFrame(services_data)
71
 
72
  # Function to generate synthetic BreastCancer data
73
- def generate_breast_cancer_data(num_patients):
74
- patient_ids = [f"PPK_{i+1:05d}" for i in range(num_patients)]
 
 
75
  breast_cancer_data = {
76
  "Patient ID": patient_ids,
77
  "Age": np.random.randint(30, 80, num_patients),
@@ -102,13 +104,14 @@ num_services = st.slider("Number of Services to Generate", 10, 2000, 500)
102
  num_patients = st.slider("Number of Breast Cancer Patients to Generate", 10, 500, 100)
103
 
104
  if st.button("Generate Data"):
 
105
  enrollments_df = generate_enrollments(num_members)
106
  members_df = generate_members(num_members)
107
  providers_df = generate_providers(num_providers)
108
  services_df = generate_services(num_services, enrollments_df["PRIMARY_PERSON_KEY"].tolist())
109
- breast_cancer_df = generate_breast_cancer_data(num_patients)
110
 
111
- # Display data
112
  st.subheader("Enrollments Data")
113
  st.dataframe(enrollments_df.head())
114
  st.download_button("Download Enrollments", enrollments_df.to_csv(index=False), "enrollments.csv")
 
29
  primary_keys = [f"PPK_{i+1:05d}" for i in range(num_members)]
30
  members_data = {
31
  "MEM_ETHNICITY": np.random.choice(["Hispanic", "Non-Hispanic", None], num_members),
32
+ "MEM_GENDER": ["F"] * num_members, # All members are female
33
  "MEM_MSA_NAME": np.random.choice(["DETROIT", "HONOLULU", "LOS ANGELES"], num_members),
34
  "MEM_RACE": np.random.choice(["White", "Black", "Asian", None], num_members),
35
  "MEM_STATE": np.random.choice(["MI", "HI", "CA"], num_members),
 
70
  return pd.DataFrame(services_data)
71
 
72
  # Function to generate synthetic BreastCancer data
73
+ def generate_breast_cancer_data(members_df, num_patients):
74
+ # Randomly sample from PRIMARY_PERSON_KEY in Members
75
+ patient_ids = np.random.choice(members_df["PRIMARY_PERSON_KEY"], num_patients, replace=False)
76
+
77
  breast_cancer_data = {
78
  "Patient ID": patient_ids,
79
  "Age": np.random.randint(30, 80, num_patients),
 
104
  num_patients = st.slider("Number of Breast Cancer Patients to Generate", 10, 500, 100)
105
 
106
  if st.button("Generate Data"):
107
+ # Generate data
108
  enrollments_df = generate_enrollments(num_members)
109
  members_df = generate_members(num_members)
110
  providers_df = generate_providers(num_providers)
111
  services_df = generate_services(num_services, enrollments_df["PRIMARY_PERSON_KEY"].tolist())
112
+ breast_cancer_df = generate_breast_cancer_data(members_df, num_patients)
113
 
114
+ # Display and download data
115
  st.subheader("Enrollments Data")
116
  st.dataframe(enrollments_df.head())
117
  st.download_button("Download Enrollments", enrollments_df.to_csv(index=False), "enrollments.csv")