Spaces:
Sleeping
Sleeping
eaglelandsonce
commited on
Commit
•
da3de0a
1
Parent(s):
3d6b7f5
Update app.py
Browse files
app.py
CHANGED
@@ -111,7 +111,7 @@ def generate_breast_cancer_data(num_patients):
|
|
111 |
treatment.append(treat)
|
112 |
|
113 |
breast_cancer_data = {
|
114 |
-
"
|
115 |
"Age": ages,
|
116 |
"Menopausal Status": menopausal_status,
|
117 |
"Tumor Size (cm)": tumor_sizes,
|
@@ -134,8 +134,8 @@ def generate_breast_cancer_data(num_patients):
|
|
134 |
# Function to generate Members from BreastCancer
|
135 |
def generate_members_from_breast_cancer(breast_cancer_df):
|
136 |
return pd.DataFrame({
|
137 |
-
"MEMBER_ID": breast_cancer_df["
|
138 |
-
"PRIMARY_PERSON_KEY": breast_cancer_df["
|
139 |
"MEM_GENDER": ["F"] * len(breast_cancer_df),
|
140 |
"MEM_ETHNICITY": np.random.choice(["Hispanic", "Non-Hispanic", None], len(breast_cancer_df)),
|
141 |
"MEM_RACE": np.random.choice(["White", "Black", "Asian", None], len(breast_cancer_df)),
|
@@ -146,7 +146,7 @@ def generate_members_from_breast_cancer(breast_cancer_df):
|
|
146 |
# Function to generate Enrollments from BreastCancer
|
147 |
def generate_enrollments_from_breast_cancer(breast_cancer_df):
|
148 |
return pd.DataFrame({
|
149 |
-
"PRIMARY_PERSON_KEY": breast_cancer_df["
|
150 |
"MEM_STAT": np.random.choice(["ACTIVE", "INACTIVE"], len(breast_cancer_df)),
|
151 |
"PAYER_LOB": np.random.choice(["MEDICAID", "COMMERCIAL", "MEDICARE"], len(breast_cancer_df)),
|
152 |
"PAYER_TYPE": np.random.choice(["PPO", "HMO"], len(breast_cancer_df)),
|
@@ -177,7 +177,7 @@ if st.button("Generate Data"):
|
|
177 |
breast_cancer_df = generate_breast_cancer_data(num_patients)
|
178 |
members_df = generate_members_from_breast_cancer(breast_cancer_df)
|
179 |
enrollments_df = generate_enrollments_from_breast_cancer(breast_cancer_df)
|
180 |
-
services_df = generate_services(num_services, breast_cancer_df["
|
181 |
|
182 |
# Display and download data
|
183 |
st.subheader("Breast Cancer Data")
|
|
|
111 |
treatment.append(treat)
|
112 |
|
113 |
breast_cancer_data = {
|
114 |
+
"PRIMARY_PERSON_KEY": primary_keys,
|
115 |
"Age": ages,
|
116 |
"Menopausal Status": menopausal_status,
|
117 |
"Tumor Size (cm)": tumor_sizes,
|
|
|
134 |
# Function to generate Members from BreastCancer
|
135 |
def generate_members_from_breast_cancer(breast_cancer_df):
|
136 |
return pd.DataFrame({
|
137 |
+
"MEMBER_ID": breast_cancer_df["PRIMARY_PERSON_KEY"],
|
138 |
+
"PRIMARY_PERSON_KEY": breast_cancer_df["PRIMARY_PERSON_KEY"],
|
139 |
"MEM_GENDER": ["F"] * len(breast_cancer_df),
|
140 |
"MEM_ETHNICITY": np.random.choice(["Hispanic", "Non-Hispanic", None], len(breast_cancer_df)),
|
141 |
"MEM_RACE": np.random.choice(["White", "Black", "Asian", None], len(breast_cancer_df)),
|
|
|
146 |
# Function to generate Enrollments from BreastCancer
|
147 |
def generate_enrollments_from_breast_cancer(breast_cancer_df):
|
148 |
return pd.DataFrame({
|
149 |
+
"PRIMARY_PERSON_KEY": breast_cancer_df["PRIMARY_PERSON_KEY"],
|
150 |
"MEM_STAT": np.random.choice(["ACTIVE", "INACTIVE"], len(breast_cancer_df)),
|
151 |
"PAYER_LOB": np.random.choice(["MEDICAID", "COMMERCIAL", "MEDICARE"], len(breast_cancer_df)),
|
152 |
"PAYER_TYPE": np.random.choice(["PPO", "HMO"], len(breast_cancer_df)),
|
|
|
177 |
breast_cancer_df = generate_breast_cancer_data(num_patients)
|
178 |
members_df = generate_members_from_breast_cancer(breast_cancer_df)
|
179 |
enrollments_df = generate_enrollments_from_breast_cancer(breast_cancer_df)
|
180 |
+
services_df = generate_services(num_services, breast_cancer_df["PRIMARY_PERSON_KEY"].tolist())
|
181 |
|
182 |
# Display and download data
|
183 |
st.subheader("Breast Cancer Data")
|