import streamlit as st import pandas as pd import numpy as np import csv import io import random from datetime import datetime, timedelta # Seed for reproducibility np.random.seed(42) # Function to generate synthetic BreastCancer data def generate_breast_cancer_data(num_patients): primary_keys = [f"PPK_{i+1:05d}" for i in range(num_patients)] ages = np.random.randint(30, 80, size=num_patients) menopausal_status = ["Post-menopausal" if age >= 50 else "Pre-menopausal" for age in ages] tumor_sizes = np.round(np.random.lognormal(mean=0.7, sigma=0.5, size=num_patients), 2) lymph_nodes = np.random.choice(["Positive", "Negative"], size=num_patients, p=[0.4, 0.6]) tumor_grades = np.random.choice([1, 2, 3], size=num_patients, p=[0.3, 0.5, 0.2]) tumor_stages = np.random.choice(["I", "II", "III", "IV"], size=num_patients, p=[0.4, 0.3, 0.2, 0.1]) er_status = np.random.choice(["Positive", "Negative"], size=num_patients, p=[0.75, 0.25]) pr_status = np.random.choice(["Positive", "Negative"], size=num_patients, p=[0.7, 0.3]) her2_status = np.random.choice(["Positive", "Negative"], size=num_patients, p=[0.3, 0.7]) ki67_levels = np.random.choice(["High", "Low"], size=num_patients, p=[0.6, 0.4]) tnbc_status = ["Positive" if er == "Negative" and pr == "Negative" and her2 == "Negative" else "Negative" for er, pr, her2 in zip(er_status, pr_status, her2_status)] brca_mutation = np.random.choice(["Positive", "Negative"], size=num_patients, p=[0.1, 0.9]) overall_health = np.random.choice(["Good", "Poor"], size=num_patients, p=[0.7, 0.3]) genomic_score = np.random.choice(["Low", "Intermediate", "High", "N/A"], size=num_patients, p=[0.3, 0.2, 0.1, 0.4]) treatments = np.random.choice(["Surgery", "Chemotherapy", "Radiation Therapy"], size=num_patients) return pd.DataFrame({ "PRIMARY_PERSON_KEY": primary_keys, "Age": ages, "Menopausal Status": menopausal_status, "Tumor Size (cm)": tumor_sizes, "Lymph Node Involvement": lymph_nodes, "Tumor Grade": tumor_grades, "Tumor Stage": tumor_stages, "ER Status": er_status, "PR Status": pr_status, "HER2 Status": her2_status, "Ki-67 Level": ki67_levels, "TNBC Status": tnbc_status, "BRCA Mutation": brca_mutation, "Overall Health": overall_health, "Genomic Recurrence Score": genomic_score, "Treatment": treatments }) # Function to generate Members from BreastCancer def generate_members_from_breast_cancer(breast_cancer_df): return pd.DataFrame({ "MEMBER_ID": breast_cancer_df["PRIMARY_PERSON_KEY"], "PRIMARY_PERSON_KEY": breast_cancer_df["PRIMARY_PERSON_KEY"], "MEM_GENDER": ["F"] * len(breast_cancer_df), "MEM_ETHNICITY": np.random.choice(["Hispanic", "Non-Hispanic", None], len(breast_cancer_df)), "MEM_RACE": np.random.choice(["White", "Black", "Asian", None], len(breast_cancer_df)), "MEM_STATE": np.random.choice(["MI", "HI", "CA"], len(breast_cancer_df)), "MEM_ZIP3": np.random.randint(100, 999, len(breast_cancer_df)), }) # Function to generate Enrollments from BreastCancer def generate_enrollments_from_breast_cancer(breast_cancer_df): return pd.DataFrame({ "PRIMARY_PERSON_KEY": breast_cancer_df["PRIMARY_PERSON_KEY"], "MEM_STAT": np.random.choice(["ACTIVE", "INACTIVE"], len(breast_cancer_df)), "PAYER_LOB": np.random.choice(["MEDICAID", "COMMERCIAL", "MEDICARE"], len(breast_cancer_df)), "PAYER_TYPE": np.random.choice(["PPO", "HMO"], len(breast_cancer_df)), "RELATION": np.random.choice(["SUBSCRIBER", "DEPENDENT"], len(breast_cancer_df)), }) # Function to generate Services from BreastCancer def generate_services(num_services, primary_keys): return pd.DataFrame({ "PRIMARY_PERSON_KEY": np.random.choice(primary_keys, num_services), "SERVICE_SETTING": np.random.choice(["OUTPATIENT", "INPATIENT"], num_services), "PROC_CODE": np.random.randint(1000, 9999, num_services), "SERVICE_DATE": pd.date_range(start="2023-01-01", periods=num_services).to_numpy(), "AMOUNT_BILLED": np.random.uniform(500, 15000, num_services), "AMOUNT_PAID": np.random.uniform(500, 15000, num_services), "CLAIM_STATUS": np.random.choice(["PAID", "DENIED", "PENDING"], num_services), "RELATION": np.random.choice(["SUBSCRIBER", "DEPENDENT"], num_services), }) # Function to generate Providers def generate_providers(num_providers): return pd.DataFrame({ "PROVIDER_ID": [f"PROV_{i+1:05d}" for i in range(num_providers)], "PROV_NAME": np.random.choice(["Clinic A", "Clinic B", "Clinic C"], num_providers), "PROV_STATE": np.random.choice(["MI", "HI", "CA"], num_providers), "PROV_ZIP": np.random.randint(10000, 99999, num_providers), "PROV_SPECIALTY": np.random.choice(["Oncology", "Radiology", "Surgery"], num_providers), "PROV_TAXONOMY": np.random.choice(["208100000X", "207RE0101X"], num_providers), }) # Function to generate wearable data def generate_wearable_data(num_patients, num_measurements, start_datetime, time_interval, cancer_rate, chemo_brain_effect, primary_keys): num_cancer_patients = int((cancer_rate / 100) * num_patients) cancer_patients = set(random.sample(primary_keys, num_cancer_patients)) baseline_activity = 2000 baseline_heart_rate = 80 baseline_o2 = 98.2 activity_reduction_factor = (100 - chemo_brain_effect) / 100.0 chemo_heart_rate_increase = 5 data_rows = [] timestamps = [start_datetime + i * time_interval for i in range(num_measurements)] for pkey in primary_keys: is_cancer = pkey in cancer_patients for ts in timestamps: activity_var = random.randint(-300, 300) hr_var = random.randint(-3, 3) o2_var = random.uniform(-0.3, 0.3) if is_cancer: activity = int((baseline_activity + activity_var) * activity_reduction_factor) heart_rate = baseline_heart_rate + hr_var + chemo_heart_rate_increase else: activity = baseline_activity + activity_var heart_rate = baseline_heart_rate + hr_var o2_sat = baseline_o2 + o2_var activity = max(activity, 0) heart_rate = max(heart_rate, 50) o2_sat = max(o2_sat, 90.0) data_rows.append([pkey, ts.strftime("%Y-%m-%d %H:%M:%S"), activity, heart_rate, round(o2_sat, 1)]) return pd.DataFrame(data_rows, columns=["PRIMARY_PERSON_KEY", "Measurement_Timestamp", "Activity_Level", "Heart_Rate", "O2_Saturation"]) # Main Streamlit App st.title("Synthetic Medical Data Generator with Wearable Data") # Sliders num_patients = st.slider("Number of Breast Cancer Patients to Generate", 10, 1000, 100) num_measurements = st.slider("Measurements per Patient (Wearable Data)", 1, 100, 10) num_services = st.slider("Number of Services to Generate", 10, 2000, 500) num_providers = st.slider("Number of Providers to Generate", 10, 500, 100) start_date = st.date_input("Wearable Data Start Date", value=datetime(2024, 12, 1)) start_time = st.time_input("Wearable Data Start Time", value=datetime(2024, 12, 1, 8, 0).time()) cancer_rate = st.slider("Percentage of Patients with Cancer (Wearable Data)", 0, 100, 30) chemo_brain_effect = st.slider("Chemo Brain Impact on Activity Level (in % reduction)", 0, 50, 20) if st.button("Generate Data"): primary_keys = [f"PPK_{i+1:05d}" for i in range(num_patients)] wearable_start_datetime = datetime.combine(start_date, start_time) breast_cancer_df = generate_breast_cancer_data(num_patients) members_df = generate_members_from_breast_cancer(breast_cancer_df) enrollments_df = generate_enrollments_from_breast_cancer(breast_cancer_df) services_df = generate_services(num_services, primary_keys) providers_df = generate_providers(num_providers) wearable_data = generate_wearable_data( num_patients, num_measurements, wearable_start_datetime, timedelta(hours=1), cancer_rate, chemo_brain_effect, primary_keys ) st.subheader("Breast Cancer Data") st.dataframe(breast_cancer_df.head()) st.download_button("Download Breast Cancer Data", breast_cancer_df.to_csv(index=False), "breast_cancer.csv") st.subheader("Members Data") st.dataframe(members_df.head()) st.download_button("Download Members Data", members_df.to_csv(index=False), "members.csv") st.subheader("Enrollments Data") st.dataframe(enrollments_df.head()) st.download_button("Download Enrollments Data", enrollments_df.to_csv(index=False), "enrollments.csv") st.subheader("Services Data") st.dataframe(services_df.head()) st.download_button("Download Services Data", services_df.to_csv(index=False), "services.csv") st.subheader("Providers Data") st.dataframe(providers_df.head()) st.download_button("Download Providers Data", providers_df.to_csv(index=False), "providers.csv") st.subheader("Wearable Data") st.dataframe(wearable_data.head()) st.download_button("Download Wearable Data", wearable_data.to_csv(index=False), "wearable_data.csv")