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Problem 1.34

Test Stokes’ theorem for the function v = (xy)x̂+ (2yz)ŷ + (3zx)ẑ, using the triangular shaded
area of Fig. 1.34.

Solution

The aim here is to verify Stokes’s theorem, which states that
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v · dl,

for the given triangular area S. Start by evaluating the surface integral on the left, noting that
the area element points in the positive x-direction by the right-hand corkscrew rule.
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Let L1 be the line segment along the z-axis, let L2 be the line segment along the y-axis, and let
L3 be the line segment along the hypotenuse.
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The integration paths are parameterized as follows.

l1(t) = ⟨0, 0, 2− t⟩, 0 ≤ t ≤ 2

l2(t) = ⟨0, t, 0⟩, 0 ≤ t ≤ 2

l3(t) = ⟨0, 2− t, t⟩, 0 ≤ t ≤ 2

Therefore, since v = ⟨xy, 2yz, 3zx⟩, the closed loop integral over the triangular area’s boundary is
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Because the left and right sides are the same, Stokes’s theorem is verified.
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