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Chapter 1

From the first chapter the exercises 1.1, 1.5, 1.6 and 1.14 are solved.

Exercise 1.1 Gauss’s Law

Use Gauss’s theorem [and (1.21) if necessary] to prove the following:

(a) Any excess charge placed on a conductor must lie entirely on its surface. (A conductor by
definition contains charges capable of moving freely under the action of applied electric
fields.)

(b) A closed, hollow conductor shields its interior from fields due to charges outside, but does
not shield its exterior from the fields due to charges placed inside it.

(c) The electric field at the surface of a conductor is normal to the surface and has a magni-
tude σ/ε0 where σ is the charge density per unit area on the surface.

(a) As charges per definition can move freely in a conductor, no electric field can be
situated there, or the charges would be subject to a force, by ~F = q ~E. Hence the
electric field must vanish in the conductor. Gauss’s law states that:

~∇ · ~E =
ρ

ε0
, (1)

and having ~E = 0, ρ must also be zero. As excess charge cannot be situated in the
conductor, it must lie entirely on its surface.

(b) As the net excess charge density resides on the surface of the conductor, a field will
arise outside the conductor based on the configuration of the charge. The field outside
the conductor, arising from charges placed inside it, can be found using Gauss’s law
in integral form: ∮

S

~E · ~n da =
∑
i

qi
ε0
, (2)

where qi is all charges contained within the conductor.

(c) If the electric field at the surface of the conductor has any component parallel to the
surface Ex, the charges on the surface will be subject to a force Fx = qEx, which will
move the charge around the surface until the electric field is aligned normal to the
surface. This is thus the direction of the electric field (at least in electrostatics...).
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To calculate the magnitude of the field, consider a Gaussian pillbox, small enough to
be aligned parallel to the conductor surface. As the electric field is zero within the
conductor and the direction of the electric field is normal to the surface area (and
thus only the top of the pillbox contributes), Gauss’s law becomes:∮

S

~E · ~n da =
1

ε0

∫
V
ρ(~x)d3x⇔

∮
S
E =

1

ε0

∫
A
ρ~xd2x⇔ AtopE =

Qenc
ε0

, (3)

where Qenc is the charge enclosed in the pillbox and Atop is the top area. Setting

σ = Qenc
Atop

as the charge density per unit area, it is seen that E = σ
ε0

as desired.

Exercise 1.5 Potential of the Hydrogen Atom

The time-averaged potential of a neutral hydrogen atom is given by:

Φ =
q

4πε0

e−αr

r

(
1 +

αr

2

)
, (4)

where q is the magnitude of the electronic charge, and α−1 = a0/2, a0 being the Bohr radius.
Find the distribution of charge (both continuous and discrete) that will give this potential
and interpret your result physically.

The charge distribution can be calculated from the potential by means of the Poisson equa-
tion:

∇2Φ = − ρ
ε0
, (5)

where the radial part of the Laplace operator ∇2 in spherical coordinates is (suppressing
the non-radial terms, as the potential is spherically symmetric):

∇2ψ =
1

r2

∂

∂r
r2 ∂

∂r
(ψ) . (6)

The differentiation is carried out using the ordinary rules:

−4πρ

q
=

1

r2

∂

∂r
r2 ∂

∂r

[
e−αr

r
+
αe−αr

2

]
=

1

r2

∂

∂r
r2

[
−αe

−αr

r
+ e−αr

∂

∂r

(
1

r

)
− α2e−αr

2

]
=

1

r2

∂

∂r

[
−αe−αrr + e−αrr2 ∂

∂r

(
1

r

)
− α2r2e−αr

2

]
=

1

r2

[
α2e−αrr − αe−αr + e−αr

∂

∂r
r2 ∂

∂r

(
1

r

)
+ αe−αr − α2re−αr − r2α2e−αr

2

]
⇔ ρ =

qe−αr

4π

[
α3

2
−∇2

(
1

r

)]
.

(7)
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The Laplacian of 1
r has a singular nature and the identity from Jackson equation (1.31) is

used:

∇2

(
1

r

)
= −4πδ(r). (8)

The factor of e−αr vanishes when multiplied with δ(r), and the final result is:

ρ(r) =

[
α3e−αr

8π
+ δ(r)

]
q. (9)

This charge distribution is physically interpreted as a sharp, discrete peak in the center
(the electron), and a continuous distribution (electron cloud) vanishing as r → ∞. This
is fine as a classical description, but the hydrogen atom must of course be described with
quantum mechanics.

Exercise 1.6 Capacitance

A simple capacitor is a device formed by two insulated conductors adjacent to each other. If
equal and opposite charges are placed on the conductors, there will be a certain difference of
potential between them. The ratio of the magnitude of the charge on one conductor to the
magnitude of the potential difference is called the capacitance (in SI units it is measured in
farads). Using Gauss’s law, calculate the capacitance of:

(a) Two large, flat conducting sheets of area A, separated by a small distance d.

(b) Two concentric conducting spheres with radii a, b (b > a).

(c) Two concentric conducting cylinders of length L, large compared to their radii a, b (b > a).

(d) What is the inner diameter of the outer conductor in an air-filled coaxial cable whose
center conductor is a cylindrical wire of diameter 1 mm and whose capacitance is 3 ×
10−11 F/m? 3× 10−12 F/m?

The capacitance is the quantity C ≡ Q
Φ , and will here be calculated for three geometric

configurations.

(a) Parallel plates Following the same idea as when constructing a Gaussian pillbox in
equation (3), now both the top and the bottom contributes, and clearly the field from
one plate is:

~E =
Q

2Aε0
n̂, (10)

where n̂ is the unit vector pointing away from the surface. Because of the symmetry
of the parallel plate capacitor, the magnitude of the electric field between the plates
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is:

E =
Q

Aε0
. (11)

The potential between the plates is therefore:

Φ =

∫ d

0
E dl =

Qd

Aε0
, (12)

making the capacitance:

C =
Q

Φ
=
Aε0
d
. (13)

(b) Concentric spheres The Gaussian surface is drawn as a sphere with a < r < b.
Using Gauss’s law in integral form, this symmetry can be used:∮

S

~E · ~n da =
1

ε0

∫
V
ρ(~x)d3x⇔ ~E =

1

4πε0

Q

r2
r̂, (14)

where r̂ is the unit vector in the radial direction. From the electric field the electro-
static potential is found:

Φ = −
∫

~Ed~l = −
∫ a

b

1

4πε0

Q

r2
dr =

Q

4πε0

(
1

a
− 1

b

)
. (15)

Hence the capacitance is:

C =
Q

Φ
= 4πε0

ab

b− a
. (16)

(c) Concentric cylinders The Gaussian surface is drawn as a cylinder with a < r < b.
Using Gauss’s law in integral form, this symmetry can be used:∮

S

~E · ~n da =
1

ε0

∫
V
ρ(~x) d3x⇔ ~E =

Q

2πrLε0
r̂. (17)

The electrostatic potential is:

Φ = −
∫

~E d~l =
Q

2πLε0

∫ a

b

1

r
dr =

Q

2πLε0
log(b/a). (18)

And the capacitance is:

C =
Q

Φ
=

2πLε0
log(b/a)

. (19)

(d) Using the result from (c), the diameter of the outer conductor is:

b = a · exp

(
2πε0L

C

)
. (20)

Plugging in the numbers a = 1 mm, ε0 = 8.9× 10−12 F/m and C1 = 3× 10−11 F/m,
C2 = 3× 10−12 F/m, one obtains:

b1 = 6 mm , b2 = 1.2× 108 mm. (21)
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Exercise 1.14 Electrostatic Green Functions

Consider the electrostatic Green functions of Section 1.10 for Dirichlet and Neumann boundary
conditions on the surface S bounding the volume V . Apply Green’s theorem (1.35) with
integration variable ~y and φ = G(~x, ~y), ψ = G(~x′, ~y), with ∇2

yG(~z, ~y) = −4πδ(~y − ~z). Find an
expression for the difference [G(~x, ~x′) − G(~x′, ~x)] in terms of an integral over the boundary
surface S.

(a) For Dirichlet boundary conditions on the potential and the associated boundary condition
on the Green function, show that GD(~x, ~x′) must be symmetric in ~x and ~x′.

(b) For Neumann boundary conditions, use the boundary condition (1.45) for GN (~x, ~x′) to
show that GN (~x, ~x′) is not symmetric in general, but that GN (~x, ~x′)−F (x) is symmetric
in ~x and ~x′ where:

F (x) =
1

S

∮
S

GN (~x, ~y)day. (22)

(c) Show that the addition of F (~x) to the Green function does not affect the potential Φ(~x).
See problem 3.23 for an example of the Neumann Green function.

Green’s theorem (Jackson (1.35)) is:∫
V

(φ∇2ψ − ψ∇2φ) d3x =

∮
S

[
φ
∂ψ

∂n
− ψ∂ψ

∂n

]
da. (23)

Equation 23 is rewritten using the integration variable ~y and:

φ = G(~x, ~y) , ψ = G(~x′, ~y) with: ∇2
yG(~z, ~y) = −4πδ(~y − ~z).

In this way the difference [G(~x− ~x′)−G(~x′ − ~x)] is found:∫
V
G(~x, ~y)∇2

yG(~x′, ~y)−G(~x′, ~y)∇2
yG(~x, ~y) d3y =

∮
S

[
G(~x, ~y)

∂G(~x′, ~y)

∂n
−G(~x′, ~y)

∂G(~x, ~y)

∂n

]
da⇔

4π

∫
V
G(~x′, ~y)δ(~y − ~x)−G(~x, ~y)δ(~y − ~x′)d3y =

∮
S
... da⇔

4π
[
G(~x′, ~x)−G(~x− ~x′)

]
=

∮
S
... da⇔

[G(~x− ~x′)−G(~x′ − ~x)] = − 1

4π

∮
S

[
G(~x, ~y)

∂G(~x′, ~y)

∂n
−G(~x′, ~y)

∂G(~x, ~y)

∂n

]
da

This identity is used to investigate symmetry properties of G(~x′, ~x) as G is symmetric in
exchange of ~x and ~x′ iff :

[G(~x− ~x′)−G(~x′ − ~x)] = − 1

4π

∮
S

[
G(~x, ~y)

∂G(~x′, ~y)

∂n
−G(~x′, ~y)

∂G(~x, ~y)

∂n

]
da = 0. (24)
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(a) Dirichlet boundary conditions. The Dirichlet boundary condition states:

GD(~x, ~x′) = 0 for ~x′ on S. (25)

Using this condition with equation (24), it is readily obtained that GD(~x, ~x′) is sym-
metric in exchange of ~x and ~x′ as:

G(~x− ~x′)−G(~x′ − ~x) = − 1

4π

∮
S

[
G(~x, ~y)

∂G(~x′, ~y)

∂n
−G(~x′, ~y)

∂G(~x, ~y)

∂n

]
da, (26)

since GD(~x, ~y) = 0 on the surface, the surface integral vanishes, and:

G(~x− ~x′)−G(~x′ − ~x) = 0. (27)

(b) Neumann boundary conditions. The Neumann boundary condition states:

∂GN
∂n′

(~x, ~x′) = −4π

S
for ~x′ on S. (28)

The identity from equation (24) becomes:

G(~x− ~x′)−G(~x′ − ~x) = − 1

S

∮
S
GN (~x′, ~y)−GN (~x, ~y) da, (29)

which is not zero in general, and GN (~x, ~x′) is not generally symmetric. To impose
symmetry the following derived quantities can be used:

GN ′(~x, ~x
′) = GN (~x, ~x′)− 1

S

∮
S
GN (~x, ~y) da , and

GN ′(~x
′, ~x) = GN (~x′, ~x)− 1

S

∮
S
GN (~x′, ~y) da.

(30)

Then:

GN ′(~x, ~x
′)−GN ′(~x′, ~x) =

GN (~x, ~x′)−GN (~x′, ~x)− 1

S

∮
S

[
GN (~x, ~y) +GN (~x′, ~y)

]
da,

(31)

and the non-zero right side in equation (29) vanishes.

(c). The solution to the Poisson equation for Neumann boundary conditions is (Jackson
equation 1.46):

Φ(~x) = 〈Φ〉S +
1

4πε0

∫
V
ρ(~x′)GN (~x, ~x′) d3x′ +

1

4π

∮
S

∂Φ

∂n′
GN da′. (32)
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Adding F to GN makes equation (32):

Φ′ =
1

4πε0

∫
V
ρ(~x′)(G+ F ) d3x+

1

4π

∮
S

∂Φ

∂n′
(G+ F ) da′ + 〈Φ〉S =

1

4πε0

[∫
V
ρ(~x′)G d3x′ +

∫
V
ρ(~x′)F d3x′

]
+

1

4π

[∮
S

∂Φ

∂n′
G da′ +

∮
S

∂Φ

∂n′
F da′

]
+ 〈Φ〉S =

Φ(~x) +
F

4π

[∫
V

ρ(~x′)

ε0
d3x′ +

∮
S

∂Φ

∂n′

]
︸ ︷︷ ︸

Should be zero.

+ 〈Φ〉S .

(33)

For the potential to be unaffected by F , the term within the braces should be zero.
This is readily shown using Gauss’s law in integral form and the definition of the
potential: ∫

V

ρ(~x′)

ε0
d3x+

∮
S

∂Φ

∂n′
=

∮
S

~E · ~n da+

∮
S

∂Φ

∂n′
=

−
∮
S

~∇Φ · ~n da+

∮
S

∂Φ

∂n′
= −

∮
S

∂Φ

∂n
+

∮
S

∂Φ

∂n′
= 0

(34)
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Chapter 4

From the fourth chapter the exercises 4.1 and 4.4 are solved.

Exercise 4.1 Multipole expansion

Calculate the multipole moments qlm of the charge distributions shown as parts (a) and (b)
(figure 1). Try to obtain results for the non vanishing moments valid for all l, but in each case
find the first two sets of non vanishing moments at the very least.

(c) For the charge distribution of the second set (b) write down the multipole expansion for
the potential. Keeping only the lowest-order terms in the expansion, plot the potential
in the x− y plane as a function of distance from the origin for distances greater than a.

(d) Calculate directly from Coulomb’s law the exact potential for (b) in the x − y plane.
Plot it as a function of distance and compare with the result found in part (c). Divide
out the asymptotic form in parts (c) and (d) to see the behavior at large distances
more clearly.

(a) The charge distribution is:

ρ(r, φ, θ) =
q

a2
δ(r − a)δ(cos(θ))[δ(φ) + δ(φ− π

2
)− δ(φ− π)− δ(φ− 3π

2
)]. (35)

The multipole moment is given by:

qlm =

∫
Y ∗lm(θ, φ)rlρ(~x) d3x. (36)

In spherical coordinates the integral becomes:

qlm =
q

a2

∫∫∫
Y ∗lm(θ, φ)rl+2δ(r − a)δ(cos(θ)) sin(θ)·

[δ(φ) + δ(φ− π

2
)− δ(φ− π)− δ(φ− 3π

2
)] drdφdθ.

(37)

The spherical harmonic function can be decomposed (Jackson equation (3.53)) as:

Y ∗lm(θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (cos(θ))e−imφ. (38)

9



Figure 1: Discrete charge distributions for exercise 4.1.

The integral can then be carried out, here split up in it’s partial terms:∫
δ(r − a)rl+2 da = al+2;∫
Pml (cos(θ)δ(cos(θ))) dθ = Pml (0);∫
e−imφ[δ(φ) + δ(φ− π

2
)− δ(φ− π)− δ(φ− 3π

2
)] dφ = 1 + (−i)m − (−1)m − im =

1 + (−1)m(i)m − (−1)m − im = (1− im)− (−1)m(1− im) = (1− im)[1− (−1)m].

(39)

The last part is readily seen to be 2(1 − im) for m odd and zero for m even. This
makes the full expression:

qlm = 2qal

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (0)(1− im) for m odd, and 0 for m even. (40)

The expression in equation (40) can be used to calculate moments for specific values
of l. As the exercise asks explicitly for the two first non vanishing ones, these are
calculated (using Mathematica). The monopole moment (l = 0) vanishes as m is
zero (which also makes sense since the net charge is zero). The dipole moments are:

q1,−1 = qa (1 + i)

√
1

π
, q1,0 = 0 , q1,1 = 2qa(1− i)

√
3

8π
. (41)

The quadrupole moments all vanish. Some because m is even, the others because
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Pml (0) = 0 in those cases. The non-zero octupole moments are:

q3,−3 =
1

24
a3q(1− i)

√
363

2π
, q3,−1 = −1

4
a3q(1 + i)

√
15

4π
,

q3,1 = a3q(1− i)
√

3

4π
, q3,3 = −a3q(1 + i)

√
35

16π
.

(42)

(b) The charge distribution is this time split in two terms, where the one describing the
−2q situated at the origin, must clearly be dependent of 1

r2
:

ρ(r, φ, θ) =
q

2πa2
δ(r − a)[δ(cos(θ)− 1) + δ(cos(θ) + 1)]− q

2πr2
δ(r). (43)

The azimuthal symmetry of the problem simplifies the expansion of the spherical
harmonic function (Jackson equation (3.57)) greatly, and the multipole moment be-
comes:

qlm =
q

2π

√
2l + 1

4π

∫ u=1

u=−1

∫ a

0

∫ 2π

0

rl+2

a2
δ(r − a)[δ(u+ 1) + δ(u− 1)]Pl(u)− δ(r)rlPl(u) dφdrdu

(44)

where the integration variable θ is substituted by u = cos(θ)⇒ dθ = − du
sin(θ) . The r

and φ parts integrates easily, and:

qlm = qal
√

2l + 1

4π

[∫ 1

−1
(δ(u+ 1) + δ(u− 1))Pl(u) du−

∫ 1

−1
Pl(u) du

]
. (45)

The first integral evaluates to: (Pl(1)+Pl(−1)) = (1+(−1)l), using that Pl(1) = 1 for
all l, and since Pl(−x) = (−1)lPl(x), (Pl(x) is either even or odd), Pl(−1) = (−1)l.

For the second integral, a result regarding integrals of Legendre polynomials is used
(not in Jackson): ∫ 1

−1
f(x)Pn(x) dx =

(−1)n

2nn!

∫ 1

−1
(x2 − 1)n

dnf

dxn
dx. (46)

Using f(x) = 1, the second integral evaluates to 2 when l = 0 and 0 otherwise.
Collecting the terms, the multipole moment valid for all values of l is:

qlm = qal
√

2l + 1

4π

(
[1 + (−1)l]− 2δ(l)

)
if m = 0, 0 otherwise. (47)

Looking at the charge distribution can provide some (physical) insight to this expres-
sion. As the net charge is zero, clearly q00 = 0, and the second term serves to provide
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exactly this result. Realizing this, equation (47) can be rewritten in a somewhat
simpler form:

qlm = qal
√

2l + 1

4π
if m = 0 and l > 0 is even, 0 otherwise. (48)

The first two non vanishing moments is thus seen to be the l = 2 and l = 4 terms:

q20 =

√
5

π
a2q and q40 =

√
9

π
a4q. (49)

(c) The full expression for the multipole expansion of the potential is (Jackson equation
4.1):

Φ(~x) =
1

4πε0

∞∑
l=0

l∑
m=−l

4π

2l + 1
qlm

Ylm(θ, φ)

rl+1
. (50)

The expression for qlm from equation (48) is used and, remembering the azimuthal
symmetry, the second sum vanishes, and the spherical harmonics is expanded in
Legendre polynomials:

Φ(r, cos(θ)) =
q

4πε0a

∞∑
l=2, even

Pl(cos(θ))
(a
r

)l+1
. (51)

The first term of the expansion in the x−y plane (using P2(cos(θ)) = 1
4(1+3 cos(2θ)))

is:

Φ(r) = − qa2

4πε0

1

r3
. (52)

This is plotted in figure 2 (left), the potential in units of − q
4πε0a

.

(d) Using Coulomb’s law directly, the potential carries a term for each charge, proportional
to the magnitude of the charge divided by the distance to the charge. Hence:

ΦC(r) = − q

2πε0

[
1√

a2 + r2
− 1

r

]
, (53)

which is shown in figure 2 (right).

The ratio of the two is plotted in figure 3, from which it is seen that the multipole
approximation becomes increasingly more precise as r becomes larger.

Exercise 4.4 Multipole expansion II
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Figure 2: Potentials in units of − q
4πε0a

, for the multipole expansion (left) and the exact
calculation (right).
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Figure 3: Ratio of the two potentials shown in figure 2. It is seen that the multipole
approximation becomes increasingly more precise as r becomes larger.
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(a) Prove the following theorem: For an arbitrary charge distribution ρ(~x) the values of the
(2l+1) moments of the first non vanishing multipole are independent of the origin of the
coordinate axes, but the values of all higher multipole moments do in general depend
on the choice of origin. (The different moments qlm for fixed l depend, of course, on the
orientation of the axes.)

(b) A charge distribution has multipole moments q, ~p,Qij , ... with respect to one set of co-
ordinate axes and moments q′, ~p′, Q′ij , ... with respect to another set whose axes are

parallel to the first, but whose origin is located at the point ~R = (X,Y, Z) relative
to the first. Determine explicitly the connections between the monopole, dipole and
quadrupole moments in the two coordinate frames.

(c) If q 6= 0 can ~R be found so that ~p′ = 0? If q 6= 0, ~p 6= 0, or at least p 6= 0, can ~R be found
so that Qij = 0?

(a) The theorem is reformulated as follows:

Consider the (l’th) multipole moment coefficients (the multipole moment tensor in
Cartesian coordinates), in a generalized form, ignoring the subtraction of the trace
and the factor of 3:

Qijk...l =

∫
ρ(~x)xixjxk...xl d

3x. (54)

ThenQijk...l is translational invariant; i.e. invariant under coordinate transformations
of the type: xi 7→ x′i = xi − αi, iff the l’th multipole coefficients are the first non
vanishing ones.

Proof: The multipole moment tensor can be written in this new coordinate system
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(using for short ρ′ = ρ(~x′ + ~α)):

Qijk...l =

∫
ρ′(x′i + αi)(x

′
j + αj)(x

′
k + αk)...(x

′
l + αl) d

3x =∫
ρ′x′ix

′
j ...x

′
l d

3x +

αi

∫
ρ′x′j ...x

′
l d

3x +

αj

∫
ρ′x′ix

′
k...x

′
l d

3x +

...

αl

∫
ρ′x′ix

′
j ...x

′
l−1 d

3x +

αiαj

∫
ρ′x′kx

′
k+1...x

′
l d

3x +

αiαjαk

∫
ρ′x′k+1...x

′
l d

3x +

...

αiαj ...αl

∫
ρ′ d3x =

Q′ijk...l + αiQ
′
jk...l + αjQ

′
ik...l + ...

(55)

In the last step, it is realized that all terms are multipole moments in the new
coordinate system. Consider first the case where all lower order multipole moments
are zero. Clearly this implies that Qijk...l = Q′ijk...l, and the theorem is proven one
way. Consider on the other hand the situation where symmetry and hence Qijk...l =
Q′ijk...l is given. The only way for this to be true for arbitrary ρ′ and αi, is if all lower
terms are individually zero. The theorem is thus proved both ways.

The exercise makes the specific statement that: ”...the values of all higher multipole
moments do in general depend on the choice of origin”. This is clearly the case from
the above statements, as multipole moments, which are not ’the first’, will have extra
terms in the new coordinate system, dependent of αi.

(b) As a monopole has l = 0, a dipole has l = 1 and a quadrupole has l = 2, the direct
calculation of the connection between these in the two coordinate systems is done by
applying directly the expansion in equation (55).

Monopole (q):

q =

∫
ρd3x =

∫
ρ′d3x = q′. (56)
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Dipole (pi):

pi =

∫
ρxid

3x =

∫
ρ′(x′i + αi)d

3x =

∫
ρ′x′id

3x+ αi

∫
ρ′d3x = p′i + αiq

′. (57)

Quadrupole (Qij):

Qij =

∫
ρxixjd

3x =

∫
ρ′(x′i + αi)(x

′
j + αj) d

3x =∫
ρ′x′ix

′
j d

3x+ αi

∫
ρ′x′j d

3x+ αj

∫
ρ′x′i d

3x+ αiαj

∫
ρ′ d3x =

Q′ij + αjp
′
i + αip

′
j + αiαjq

′.

(58)

(c) Using equation (57), it is seen that, if p′i = 0 and q 6= 0 then:

αi =
pi
q
. (59)

If q = 0 and pi 6= 0 then pi = p′i and (by equation (58)):

Q′ij =Qij − αjpi − αipj = 0⇔
Qij = αjpi + αipj ,

(60)

which fully specifies αi.
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Figure 4: The solenoid related to problem 5.3.

Chapter 5

From the fifth chapter the exercises 5.3 and 5.7 are solved.

Exercise 5.3 Finite solenoid

A right circular solenoid of finite length L and radius a has N turns per unit length and carries
a current I. Show that the magnetic induction on the cylinder axis in the limit NL→∞ is:

Bz =
µ0NI

2
(cos(θ1) + cos(θ2)) (61)

where the angles are defined in the figure (figure 4).

First the simple case of the magnetic field from a single current loop, as seen from a point
on the centerline of the loop is treated. This situation is treated in quite some generality
in Jackson 5.5, but the symmetries of this particular problem makes it easier to treat it
again from the beginning. If the centerline is parallel to the z-axis then the line connecting
the point and the intersection of the circular loop with the x-axis must be |~x| =

√
a2 + z2.

The angle between the z-axis and this line is called θ. Now from the Biot-Savart law:

dB =
µ0

4π
I

1

|~x|2
dI =

µ0I

4π

1

a2 + z2
dI, (62)

and therefore (using sin(θ) = a√
a2+z2

):

dBz = dB sin(θ) =
µ0I

4π

a

(a2 + z2)3/2
dI, (63)

making the field (still only for a single loop):

Bz(one loop) =

∮
µ0I

4π

a

(a2 + z2)3/2
dI =

µ0I

2

a2

(a2 + z2)3/2
. (64)
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The limit given in the assignment, suggests that contributions from several loops should
be integrated. As the loop density N is known the sought magnetic induction is found by
integration over the whole coil. To end up with results in the same coordinate system as
figure 4, the origin is set at the point on the z-axis where the two lines meet (with positive
direction pointing left), and thus:

Bz =
a2µIN

2

[∫ z1

0

1

(a2 + z2)3/2
dz +

∫ 0

−z2

1

(a2 + z2)3/2
dz

]
. (65)

The integral is looked up, and it is used that zi = cos(θi)
√
a2 + z2

i , i = {1, 2} resultantly:

Bz =
a2µ0NI

2

[
z1

a2
√
a2 + z2

1

+
z2

a2
√
a2 + z2

2

]
=
µ0NI

2
[cos(θ1) + cos(θ2)]. (66)

Exercise 5.7 Helmholtz coils

A compact circular coil of radius a carrying a current I (perhaps N turns, each with current
I/N), lies in the x− y plane with its center at the origin.

(a) By elementary means [Eq. 5.4] find the magnetic induction at any point on the z-axis.

(b) An identical coil with the same magnitude and sense of the current is located on the
same axis, parallel to, and a distance b above, the first coil. With the coordinate
origin relocated at the point midway between the centers of the two coils, determine the
magnetic induction on the axis near the origin as an expansion in powers of z, up to z4

inclusive:

Bz =

(
µ0Ia

2

d3

)[
1 +

3(b2 − a2)z2

2d4
+

15(b4 − 6b2a2 + 2a4)z4

16d8
+ ...

]
, (67)

where d2 = a2 + b2/4.

(c) Show that, off-axis near the origin, the axial and radial components, correct to second
order in the coordinates, take the form:

Bz = σ0 + σ2

(
z2 − ρ2

2

)
; Bρ = −σ2zρ. (68)

(d) For the two coils in part (b) show that the magnetic induction on the z-axis for large
|z| is given by the expansion in inverse odd powers of |z| obtained from the small z
expansion of part (b) by the formal substitution, d→ |z|.

(e) If b = a, the two coils are known as a pair of Helmholtz coils. For this choice of geometry
the second terms in the expansions of parts (b) and (d) are absent (σ2 = 0 in part (c)).
The field near the origin is then very uniform. What is the maximum permitted value
of |z|/a if the axial field is to be uniform to one part in 104, one part in 102?
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(a) The result from equation (64) (exercise 5.1) is reused:

Bz(one loop) =

∮
µ0I

4π

a

(a2 + z2)3/2
dI =

µ0I

2

a2

(a2 + z2)3/2
. (69)

(b) The principle of superposition is again used, but this time the magnetic field is the
sum of the contributions from the two loops. In the coordinate system with origin in
the middle of the two loops, distanced b from each other, the magnetic induction is
clearly:

Bz =
µ0Ia

2

2

[
1

(a2 + (z − b
2)2)3/2

+
1

(a2 + (z + b
2)2)3/2

]
. (70)

A Taylor expansion of equation (70) around z = 0, keeping only terms up to order
z4 is (using Mathematica):

Bz = µ0Ia
2

[
8

(4a2 + b2)3/2
−

192
(
a2 − b2

)
z2

(4a2 + b2)7/2
+

1920
(
2a4 − 6a2b2 + b4

)
z4

(4a2 + b2)11/2
+O(z5)

]
,

(71)
which is readily brought to the desired form, using d2 = a2 + b2/4:

Bz =

(
µ0Ia

2

d3

)[
1 +

3(b2 − a2)z2

2d4
+

15(b4 − 6b2a2 + 2a4)z4

16d8
+O(z5)

]
. (72)

(c) This could in principle be done using the Biot-Savart law again, but since equation
(72) can be used as a boundary value for the solution of the Laplace equation for
this particular geometry, that is the approach taken. It is noted that the expression
in equation (72) can be written as:

Bz(ρ = 0) = −∇Φ = σ0 + σ2z
2, (73)

with proper choice of σ0 and σ2. The magnetic field inside the cylinder spanned out
by the two rings, is given by the Laplace equation:

∇2Φ = 0. (74)

The solution to the Laplace equation in cylindrical coordinates is (Jackson equation
3.106):

Φ(ρ, φ, z) =

∞∑
m=0

∫ ∞
0

e−kzJm(kρ)[Am(k) sin(mφ) +Bm(k) cos(mφ)] dk, (75)
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where Jm is a Bessel function and A and B are coefficients given by the expressions in
Jackson equation 3.109. As the problem exhibits azimuthal symmetry, the expression
is greatly simplified (as only m = 0 contributes):

Φ(ρ, z) =

∫ ∞
0

e−kzJ0(kρ)B0(k) dk. (76)

The Bessel function can be expanded using:

J0 = 1− x2

22
+

x4

2242
− ..., (77)

making the potential:

Φ(ρ, z) ≈
∫ ∞

0
e−kzB0(k)

(
1− k2ρ2

4

)
dk =∫ ∞

0
e−kzB0(k) dk − ρ2

4

∫ ∞
0

k2e−kzB0(k) dk =∫ ∞
0

e−kzB0(k) dk − ρ2

4

∂2

∂z2

∫ ∞
0

k2e−kzB0(k) dk

(78)

where in the last step it is used that k2e−kz = ∂2

∂z2
e−kz. It is furthermore noticed

that if ρ = 0, the second term vanishes. The first term is thus the boundary term
Φ(0, z), and:

Φ(ρ, z) = Φ(0, z)− ρ2

4

∂2

∂z2
Φ(0, z). (79)

Note that this result is general for the cylindrical geometry, and that both the coef-
ficients A and B now have vanished. It is only now the specific configuration of the
two coils enters the problem, by writing out the desired terms using equation (73)
(and, of course, ~B = −∇Φ):

Bρ =
∂

∂ρ
Φ(0, z)− ∂

∂ρ

ρ2

4

∂2

∂z2
Φ(0, z) =

Bρ(0, z)−
∂

∂ρ

ρ2

4

∂

∂z
Bz(0, z) =

0− 2ρ

4
(2σ2z) = −ρσ2z.

Bz =
∂

∂z
Φ(0, z)− ∂

∂z

ρ2

4

∂2

∂z2
Φ(0, z) =

(σ0 + σ2z
2)− ρ2

4

∂2

∂z2
(σ0 + σ2z

2) =

σ1 + σ2z
2 − 2

ρ2

4
σ2 =

σ0 + σ2

(
z2 − ρ2

2

)
.

(80)
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(d) The Taylor expansion of equation (70) at z =∞ becomes (again, using Mathematica):

µ0Ia
2

[
1

z3
+

3(b2 − a2)

2z5
+

15(2a4 − 6a2b2 + b4)

16z7
+O(1/z)8

]
, (81)

which is equivalent to equation (72) under the substitution d 7→ |z| (as seen by
comparison).

(e) For b = a equation (72) becomes:

Bz =
µ0I

(
√

5/2)3a

[
1− 144

125

z4

a4

]
. (82)

Since the second term in the parenthesis goes as z4, it is taken as a correction term,
and thus describes the uniformity of the field. Solving for uniformities of 10−4 and
10−2, gives:

|z|
a

= 0.097 and
|z|
a

= 0.305 (83)

respectively.
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Chapter 6

From the sixth chapter the exercises 6.1 and 6.5 are solved.

Exercise 6.1

In three dimensions the solution to the wave equation (6.32) for a point source in space and
time (a light flash at t′ = 0, ~x′ = 0) is a spherical shell disturbance of radius R = ct, namely
the Green function G(+) (6.44). It may be initially surprising that in one or two dimensions,
the disturbance possesses a �wake�, even though the source is a �point� in space and time.
The solutions for fewer dimensions than three can be found by superposition in the superfluous
dimensions(s), to eliminate dependence on such variable(s). For example, a flashing line source
of uniform amplitude is equivalent to a point source in two dimensions.

(a) Starting with the retarded solution to the three-dimensional wave equation (6.47), show
that the source f(~x′, t′) = δ(x′)δ(y′)δ(t′), equivalent to a t = 0 point source at the origin
in two spatial dimensions, produces a two-dimensional wave:

Ψ(x, y, t) =
2cΘ(ct− ρ)√
c2t2 − ρ2

, (84)

where ρ2 = x2 + y2 and Θ(ξ) is the unit step function [Θ(ξ) = 0(1) if ξ < (>)0.].

(b) Show that a �sheet� source, equivalent to a point pulsed source at the origin in one
space dimension produces a one-dimensional wave proportional to:

Ψ(x, t) = 2πcΘ(ct− |x|). (85)

The solution to the wave equation is given by:

Ψ(~x′, t′) =

∫
[f(~x′, t′)]ret
|~x− ~x′|

d3x′, (86)

where the [ ]ret indicates that t′ = t− |~x− ~x′|/c.

(a) Note that |~x−~x′|2 = (x−x′)2 + (y− y′)2 + (z− z′)2, and at x′ = y′ = 0, this becomes:

|~x− ~x′| =
√
ρ2 + (z − z′)2. (87)

Performing the integration over x′ and y′ therefore yields:

Ψ =

∫ ∞
−∞

δ(t− 1
c

√
ρ2 + (z − z′)2)√

ρ2 + (z − z′)2
dz′. (88)
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The integration variable is changed: z′ 7→ u = z − z′. To perform the integral it is
used that, for a delta function of a function f(u):

δ(f(u)) =
∑
i

1∣∣∣∂f∂u(ui)
∣∣∣ δ(u− ui) , (89)

where ui are the roots of f(u) = 0. It is readily seen that ∂f
∂u = −1

c
u√
ρ2+u2

, and

that f(u) = 0 has two roots; ui = ±
√
c2t2 − ρ2. To keep u from taking complex

(unphysical) values, it must be demanded that ρ ≤ ct. Since the two roots are
related by u1 = −u2, Ψ is written as:

Ψ(x, y, t) =

∫ ∞
−∞

c
√
ρ2 + u2

1

u1

δ(u− u1)√
ρ2 + u2

du+

∫ ∞
−∞

c
√
ρ2 + u2

2

|u2|
δ(u+ u2)√
ρ2 + u2

du =

c

u1
+

c

|u2|
=

2c

u1
=

2c√
c2t2 − ρ2

.

(90)

To enforce the demand that u should be real, the result is multiplied by the theta
function Θ(ct− ρ), such that:

Ψ(x, y, t) =
2cΘ(ct− ρ)√
c2t2 − ρ2

. (91)

(b) By integrating over δ(x′) in the source function, Ψ is this time:

Ψ =

∫ ∫
δ(t− 1

c

√
x2 + (y − y′)2 + (z − z′)2)√

x2 + (y − y′)2 + (z − z′)2
dy′dz′. (92)

This simplifies greatly by going to polar (r, θ) coordinates in the ((y − y′), (z − z′))-
plane:

Ψ =

∫ 2π

0

∫ ∞
0

δ(t− 1
c

√
x2 + r2)

√
x2 + r2

rdrdθ = 2π

∫ ∞
0

δ(t− 1
c

√
x2 + r2)

√
x2 + r2

rdr. (93)

The delta function is treated as before, this time only the positive solution con-
tributes, as r is positive definite, and in the end:

Ψ(x, t) = 2πcθ(ct− |x|). (94)

where the theta-function now enforces the demand that roots of f(r) = 0 should be
real.

Exercise 6.5
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A localized electric charge distribution produces an electrostatic field, ~E = −∇Φ. Into this
field is placed a small localized time-independent current density ~J(~x), which generates a
magnetic field ~H.

(a) Show that the momentum of these electromagnetic fields, (6.117), can be transformed to:

~Pfield =
1

c2

∫
Φ ~J d3x, (95)

provided the product Φ ~H falls off rapidly enough at large distances. How rapidly is
�rapidly enough�?

(b) Assuming that the current distribution is localized to a region small compared to the
scale of variation of the electric field, expand the electrostatic potential in a Taylor
series and show that:

~Pfield =
1

c2
~E(0)× ~m, (96)

where ~E(0) is the electric field at the current distribution and ~m is the magnetic moment,
(5.54), caused by the current.

(c) Suppose the current distribution is placed instead in a uniform electric field ~E0 (filling all
space). Show that, no matter how complicated is the localized ~J , the result in part (a)
is augmented by a surface integral contribution from infinity equal to minus one-third
of the result of part (b), yielding:

~Pfield =
2

3c2
~E0 × ~m. (97)

Compare this result with that obtained by working directly with (6.117) and the con-
siderations at the end of Section 5.6.

(a) Inserting −∇Φ for the electrostatic field the expression for the momentum (Jackson
equation 6.117) becomes:

~Pfield =
1

c2

∫
V

~E × ~H d3x = − 1

c2

∫
V
∇Φ× ~H d3x. (98)

This is rewritten using the vector identity: ∇ × (ψ~a) = ∇ψ × ~a + ψ∇ × ~a. The
momentum thus becomes a sum of two integrals:

c2 ~Pfield =

∫
V

Φ∇× ~H d3x−
∫
V
∇× Φ ~H d3x =∫

V
Φ∇× ~H d3x−

∫
S

Φ ~H d~a,

(99)

where, in the last step, the second integral is rewritten as a surface integral. The
full expression can thus be viewed as a leading term, minus a surface term. As the
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surface integral grows as distance squared, Φ ~H must fall off faster than that, for the
term to vanish. The remaining term is rewritten using Ampere’s law, but as the
current density is time-independent, ∂t ~D = 0, so:

~Pfield =
1

c2

∫
V

Φ ~J d3x, (100)

as desired.

(b) The magnetic moment (Jackson equation (5.52)) is:

~m =
1

2

∫
~x′ × ~J(~x′) d3x. (101)

First the electrostatic potential is expanded:

Φ ≈ Φ(0) +∇Φ(0) · ~x (102)

The potential is chosen such that Φ(0) = 0, and by inserting in equation (100), an
expression for ~Pfield is obtained:

~Pfield = − 1

c2

∫
V

( ~E(0) · ~x) ~J d3x. (103)

In the following the arguments from Jackson p. 185 regarding a similar integral is
followed closely. As ~E(0) does not depend on ~x, it is moved outside the integral, and
the ith component of the momentum can be written:

P ifield = − 1

c2

∑
j

E(0)j

∫
V
Jix
′
j d

3x′. (104)

From the identity in Jackson (5.52), using that ~J is localized and divergenceless, it
is readily obtained that:∫

x′iJi d
3x′ = −1

2

∫
x′iJj − x′jJi d3x. (105)

Therefore equation (104) becomes:

P ifield =
1

c2

1

2

∑
j

E(0)j

∫
V
x′iJj − x′jJi d3x =

1

c2

1

2

∑
j,k

εijkE(0)j

∫
V

(~x′ × ~J)k d
3x =

1

c2

(
~E(0)× 1

2

∫
V
~x′ × ~J d3x′

)
i

.

(106)

Making the full momentum vector:

~Pfield =
1

c2
~E(0)× ~m. (107)
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(c) The easiest way to obtain the desired result, is by working with Jackson equation
(6.117) directly. As the electric field is uniform, it reduces to:

~Pfield = ε0 ~E0 ×
∫
V

~B d3x. (108)

If all the current is contained within a sphere Jackson equation (5.62) applies, and:

~Pfield =
2

3c2
~E0 × ~m, (109)

directly.
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Figure 5: Sketch of the layer configuration with the wave numbering scheme drawn in.

Chapter 7

From the seventh chapter the exercises 7.2, 7.3, 7.5, 7.13 and 7.16 are solved.

Exercise 7.2 Reflection/refraction from layered interface

A plane wave is incident on a layered interface as shown in figure 5. The indices of refraction
of the three non permeable media are n1, n2, n3. The thickness of the intermediate layer is
d. Each of the other media is semi-infinite.

(a) Calculate the transmission and reflection coefficients (ratios of transmitted and reflected
Poynting’s flux to the incident flux), and sketch their behavior as a function of frequency
for n1 = 1, n2 = 2, n3 = 3; n1 = 3, n2 = 2, n3 = 1; and n1 = 2, n2 = 4, n3 = 1.

(b) The medium n1 is part of an optical system (e.g., a lens); medium n3 is air (n3 = 1). It is
desired to put an optical coating (medium n2) on the surface so that there is no reflected
wave for a frequency ω0. What thickness and index of refraction n2 are necessary?

(With a little inspiration from Griffiths’ exercise 9.34)

(a) The materials are assumed linear and homogenous, and it is assumed that µ1 = µ2 =
µ3 = µ0. Reflection and refraction are determined from boundary conditions at the
surfaces. With the considered configuration, five waves is considered in total, as
depicted on figure 5. Wave 1 traveling right in media I, wave 2 traveling left in media
I, wave three traveling right in media II, wave four traveling left in media II and

27



wave 5 traveling right in media III. Letting the interface between media I and II be
situated at z = 0, then the interface between media II and III is at z = d. If the
amplitudes of the 5 waves are written as E1, ..., E5, and the electric fields evolve as
~En = En exp(i~k~z), with positive z direction indicated on the picture. The interface
between the first two layers gets a z coordinate of z = 0. The boundary conditions
are (at z = 0):

E1 + E2 = E3 + E4,√
ε1
µ0

(E1 − E2) =

√
ε2
µ0

(E3 − E4),
(110)

and (at z = d (as ~E5 = E5e
i ~k3(~z−d))):

E3e
ik2d + E4e

−ik2d = E5,√
ε2
µ0

(E3e
ik2d − E4e

−ik2d) =

√
ε3
µ0
E5.

(111)

Using for short β =
√

ε2
ε1

and α =
√

ε3
ε2

, the four equations becomes:

E1 + E2 = E3 + E4,

(E1 − E2) = β(E3 − E4),
(112)

and (at z = d):

E3e
ik2d + E4e

−ik2d = E5,

E3e
ik2d − E4e

−ik2d = αE5.
(113)

Adding and subtracting the equations pairwise gives:

2E1 = (1 + β)E3 + (1− β)E4,

2E2 = (1− β)E3 + (1 + β)E4,

2E3e
ik2d = (1 + α)E5,

2E4e
ik2d = (1− α)E5

(114)

It is then possible to write E1 in terms of E5:

E1 =
1

4

[
(1 + α)(1 + β)e−ik2d + (1− α)(1− β)eik2d

]
E5. (115)

The expression in the square parenthesis is expanded in sines and cosines (and re-
duced):

E1 =
1

2
[(αβ + 1) cos(k2d)− (α+ β)i sin(k2d)]E5. (116)
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We can do the same thing to write E2 in terms of E5 (to be used later):

E2 =
1

2
[(1− αβ) cos(k2d)− (α− β)i sin(k2d)]E5, (117)

and insert the above expression to get E2 in terms of E1:

E2 =
(1− αβ) cos(k2d)− (α− β)i sin(k2d)

(1 + αβ) cos(k2d)− (α+ β)i sin(k2d)
E1. (118)

The transmission coefficient is T = ε3v3
ε1v1

(
E5
E1

)2
= n3

n1

(
E5
E1

)2
. This is calculated by

first finding:(
E1

E5

)2

=

1

4

[
(αβ + 1)2 − (αβ + 1)2 sin2(k2d) + (α+ β)2 sin2(k2d)

]
=

1

4

[
(αβ + 1)2 − (α2β2 + 1 + 2αβ − α2 − β2 − 2αβ) sin2(k2d)

]
=

1

4

[
(αβ + 1)2 − (1− α2)(1− β2) sin2(k2d)

]
.

(119)

By using α = n3/n2, β = n2/n1 and k2d = ωn2d/c, the transmission coefficient is:

T =
4n1n

2
2n3

n2
2(n1 + n3)2 + (n2

2 − n2
3)(n2

2 − n2
1) sin2

(
n2ωd
c

) . (120)

The reflection coefficient is then given by conservation of energy as: R = 1− T .

It is seen that the expression in equation (120) in symmetric in exchange of n1 and
n3. We therefore obtain the same result setting n1 = 1, n2 = 2 and n3 = 3, as setting
n1 = 3, n2 = 2 amd n3 = 1 namely (using Mathematica):

T =
96

113 + 15 cos(4ωd/c)
. (121)

For n1 = 2, n2 = 4 amd n3 = 1 we obtain:

T =
32

9(4 + 5 sin2(4ωd/c))
. (122)

In figure (left) T and R from equation (121) are plotted, and in figure (right) T and
R from equation (122) are plotted, all as a function of ωd/c.
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Figure 6: T (blue) and R (red) as a function of ωd/c given two sets of values of n1, ..., n3.

(b) Setting n3 = 1, we get for R:

0 = R(ω0) = 1− 4n1

(1 + n1)2 +
(1−n2

2)(n2
1−n2

2) sin2(n2ωd/c)

n2
2

, (123)

which implies that:

(n1 − 1)2n2
2 + (1− n2

2)(n2
1 − n2

2) sin2(n2ωd/c) = 0. (124)

An option for solving this, is to equate the two terms to zero separately. The first
term yields:

(n1 − 1)2n2
2 = 0⇔ (n1n2 − 1)2 = 0⇔ n1n2 = 1. (125)

The second term implies that:

sin2(n2ωd/c) = 0⇒ d =
2πkc

ωn2
(126)

where k is an integer.

Exercise 7.3

Two plane semi-infinite slabs of the same uniform, isotropic, non permeable, lossless dielectric
with index of refraction n are parallel and separated by an air gap (n = 1) of width d. A
plane electromagnetic wave of frequency ω is incident on the gap from one of the slabs with
angle of incidence i. For linear polarization both parallel to and perpendicular to the plane of
incidence:

(a) calculate the ratio of power transmitted into the second slab to the incident power and
the ratio of reflected to incident power.
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(b) for i greater than the critical angle for total internal reflection, sketch the ratio of trans-
mitted power to incident power as a function of d measured in units of wavelengths in
the gap.

(a) As this exercise is very similar to the 7.2, I will adopt the same notation (and also
assume µ = µ0 in the medium). By making the substitutions d′ = d/ cos(r), the
boundary conditions for ~E perpendicular to the interface, are (at z = 0):

E1 + E2 = E3 + E4,√
ε1
µ0

(E1 − E2) cos(i) =

√
ε2
µ0

(E3 − E4) cos(r),
(127)

and (at z = d):

E3e
ik2d′ + E4e

−ik2d′ = E5e
ik1d′ ,√

ε2
µ0

(E3e
ik2d′ − E4e

−ik2d′) cos(r) =

√
ε1
µ0
E5e

ik1d′ cos(i).
(128)

Using α =
√

ε1
ε2

cos(i)
cos(r) = n cos(i)

cos(r) and β = α−1, the four equations are equivalent to

those already solved in the previous exercise up to d → d′, and equation (119) is
reused. Now:

T =
ε3v3

ε1v1

(
E5

E1

)2

=

(
E5

E1

)2

=

4

(1 + 1)2 − (1− α2 − β2) sin2 (k2d′)
=

1

1−
(

2− n2 cos2(i)
cos2(r)

− 1
n2

cos2(r)
cos2(i)

)
sin2(k2d′)

.

(129)

The reflection coefficient can still be calculated from conservation of energy, as R =
1− T .

(b) For i > i0, the relation cos(r) = i

√(
sin(i)
sin(i0)

)2
− 1 holds. The sin2 in the denominator

will become sinh2, ensuring an exponential attenuation along the z direction, as the
wave travels parallel to the interface. Fixing n = 2, we have i0 = π/6. In figure 7
T is plotted as a function of wavelengths in the gap (x), using k2d

′ = 2πλx
λ cos(r) , and

the above relation between cos(r) and sin(i). The transmission coefficient is plotted
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Figure 7: Transmission coefficient for i = π/5 (blue), π/4 (red) and π/3 (yellow), with
i0 = π/6.
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for three different incident angles larger than i0, i = π/5 (blue), π/4 (red) and π/3
(yellow). It is seen that (for fixed n) the smaller the incident angle is, the steeper
the attenuation becomes.

Exercise 7.5

A plane polarized electromagnetic wave ~E = ~Eie
i~k·~x−iωt is incident normally on a flat uniform

sheet of an excellent conductor (σ >> ωε0) having a thickness D. Assuming that in space
and in the conducting sheet µ/µ0 = ε/ε0 = 1, discuss the reflection and transmission of the
incident wave.

(a) Show that the amplitudes of the reflected and transmitted waves, correct to the first

order in (ε0ω/σ)
1
2 , are:

Er
Ei

=
−(1− e−2λ)

(1− e−2λ) + γ(1 + e−2λ)
,

Et
Ei

=
2γe−λ

(1− e−2λ) + γ(1 + e−2λ)
,

(130)

where:

γ =

√
2ε0ω

σ
(1− i) =

ωδ

c
(1− i),

λ = (1− i)D/δ
(131)

and δ =
√

2/ωµσ is the penetration depth.

(b) Verify that for zero thickness and infinite thickness you obtain the proper limiting results.

(c) Show that, except for sheets of very small thickness, the transmission coefficient is:

T =
8(Re (γ)2 e−2D/δ)

1− 2e−2D/δ cos 2D/δ + e−4D/δ
. (132)

Sketch log T as a function of (D/δ), assuming Re (γ) = 10−2.

Define �very small thickness�.

(a) This is the same setup as before, only with a complex dielectric constant ε(ω) = ε0i
σ
ω .

The boundary conditions yield:

E1 + E2 = E3 + E4,

(E1 − E2) = β(E3 − E4),

E3e
ik2D + E4e

−ik2D = E5,

E3e
ik2D − E4e

−ik2D = αE5,

(133)
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with: β =
√

ε
ε0

=
√

1− i σ
ε0ω

and α = β−1. To obtain Et/Ei (in my notation E5/E1),

this is put directly into equation (116):

E1

E5
= cos(k2D)− (α+ β)i sin(k2D). (134)

Using 1� σ/(ωε0) gives:

β ≈
√
i
σ

ε0ω
= (1 + i)

√
σ

2ε0ω
=

2

γ
,

k2D =
2ωD

γc
≈ iλ,

α ≈ 0.

(135)

Then equation (134) becomes:

E1

E5
≈ cos(iλ)− β

2
i sin(iλ) =

γ(eλ + e−λ) + eλ − e−λ

2γ
. (136)

Inverting and multiplying numerator and denominator by e−λ gives the desired result:

E5

E1
=

2γe−λ

γ(1 + e−2λ) + 2(1− e−2λ)
. (137)

The second relation is obtained by plugging in to equation (118), following the same
procedure:

E2

E1
=

2
γ i sin(iλ)

2E1/E5
= − E5

2γE1
(eλ − e−λ) =

− 1

2γ

E5

E1

1− e−2λ

e−λ
=

−(1− e−2λ)

(1− e−2λ) + γ(1 + e−2λ)
,

(138)

as desired.

(b) The limiting result for zero thickness is: D → 0⇒ λ→ 0 giving:

E2

E1
→ 0 and

E5

E1
→ 1 (139)

The limiting result for infinite thickness is: D →∞⇒ λ→∞−∞i. Thus:

R→
(
−1

1 + γ

)
and T → 0. (140)

The reflection coefficient only approaches 1 for a perfect conductor (γ = 0), as for an
imperfect one there will always be attenuation in the material.
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(c) Except for very small thickness, the denominator of E5/E1 will be a number of O(1)
plus a very small number (of O(γ)). The O(γ) term is thus ignored, and:

T ≈
(

2γe−λ

1− e−2λ

)2

. (141)

Since the real and the imaginary part of both γ is of equal magnitude, its square is
easily calculated as |γ|2 = 2Re (γ)2. The exponentials are written:(

e−λ
)2

=
(
eiD/δe−D/δ

)2
= e−2D/δ. (142)

Then:

T ≈ 4|γ|2e−2D/δ

1 + e−4D/δ − 2Re (e−2λ)
=

8Re (γ)2 e−2D/δ

1− 2 cos(2D/δ)e−2D/δ + e−4D/δ
. (143)

This approximation breaks down when the to terms of the denominator becomes
roughly equal. The terms are Taylor expanded for small λ, and the term of O(λγ) is
dropped:

(1− e−2λ) = γ(1 + e−2λ)⇒ 2λ = 2γ − 2λγ ⇔ D/δ =
ωδ

c
, (144)

meaning that �very small thickness� means D < ωδ2/c.

Exercise 7.13

A stylized model of the ionosphere is a medium described by the dielectric constant (7.59).
Consider the earth with such a medium beginning suddenly at a height h and extending to
infinity. For waves with polarization both perpendicular to the plane of incidence (from a
horizontal antenna) and in the plane of incidence (from a verical antenna),

(a) show from Fresnel’s equations for reflection and refraction that for ω > ωp there is a
range of angles of incidence for which reflection is not total, but for larger angles there
is total reflection back toward the earth.

(b) A radio amateur operating at a wavelength of 21 meters in the early evening finds that she
can recieve distant stations located more that 1000 km away, but none closer. Assuming
that the signals are being reflected from the F layer of the ionosphere at an effective
height of 300 km, calculate the electron density. Compare with the known maximum
and minimum F later dendities of ≈ 2×1012m−3 in the daytime and ≈ (2−4)×1011m−3

at night.
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(a) Inserting in Fresnel’s equations (7.39) and (7.41) with n = 1 and n′ =

√
1− ω2

p

ω2 gives
for both polarizations (Mathematica):

i = ArcSin


√
ω2 − ω2

p

ω

 . (145)

(b) For the radio amateur to recieve a radio station from distance d away with a height h
to the F layer, the incident angle should be:

sin(i) =
d√

d2 + 4h2
. (146)

Equating the two angles gives the plasma frequency:

ω2
p = ω

(
1− d2

d2 + 4h2

)
, (147)

which in turn gives the electron density (Jackson eq. 7.60):

NZ =
ω2
pε0me

e2
= 4π2 c

2ε0me

λ2e2

(
1− d2

d2 + 4h2

)
. (148)

The lump of natural constants gives 4π2meε0c2

e2
= 1.11485 · 1015/m. Plugging in num-

bers for the rest, gives NZ = 6.69 · 1011m−3 in good agreement with the quoted
numbers.

Exercise 7.16

Plane waves propagate in a homogeneous, nonpermeable, but anisotropic dielectric. The
dielectric is characterized by a tensor εij , but if coordinate axes are chosen as the pricipal axes,
the components of displacement along these axes are related to the electric-field components
by Di = εiEi(i = 1, 2, 3), where εi are the eigenvalues of the matrix εij .

(a) Show that plane waves with frequency ω and wave vector ~k must satisfy:

~k × (~k × ~E) + µ0ω
2 ~D = 0

(b) Show that for a given wave vector ~k = k~n there are two distinct modes of propagation
with different phase velocities v = ω/k that satisfy the Fresnel equation:

3∑
i=1

n2
i

v2 − v2i
= 0

where vi = 1/
√
µ0εi is called a principal velocity, and ni is the component if ~n along

the ith principal axis.
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(c) Show that ~Da · ~Db = 0, where ~Da, ~Db are the displacements associated with the two
modes of propagation.

(a) Starting from Faraday’s law, substituting ∇ → i~k and ∂t → −iω:

∇× ~E = −∂
~B

∂t
⇒ i~k × ~E = iωµ0

~H ⇔ ~k × (~k × ~E) = ωµ0(~k × ~H). (149)

Substituting in the Ampere-Maxwell equation in matter: ∇× ~H = ∂t ~D ⇒ i~k× ~H =
−iω ~D gives the desired result:

~k × (~k × ~E) + µ0ω
2 ~D. (150)

(b) The result from the equation (150) is expanded using the vector triple product rule,
and written in tensor notation:

(~k · ~E)~k − (~k · ~k) ~E + µ0ω
2 ~D = 0⇔

(ninj − δij)Ei +
v2

v2
i

δijEi = 0
(151)

Taking the determinant and rearranging using n2
1 + n2

2 + n2
3 = 1 (all using Mathe-

matica) yields:

v2(n2
1(v2 − v2

2)(v2 − v2
3) + n2

2(v2 − v2
1)(v2 − v2

3) + n2
3(v2 − v2

1)(v2 − v2
2)) = 0, (152)

which has a trivial solution v = 0, and by dividing by Πi(v
2− v2

i ) the desired Fresnel
equations are obtained:

3∑
i=1

n2
i

v2 − v2
i

= 0. (153)

(c) Starting from equation (151), with Aij = ninj − δij and B = δijµ0εi, we have for
propagation modes a and b:

(Aij + v2
aBij)E

a
i = 0 and (Aij + v2

bBij)E
b
i = 0. (154)

Multiplying those equations by Ebi and Eai respectively, and subtracting one from the
other, gives:

Ebi (v
2
a − v2

b )BijE
a
i = 0. (155)

As va 6= vb this implies EbiBijE
a
i = 0. To show that the desired result is true, we

however need Ebi (Bij)
2Eai = 0 to hold. This is true from the following argument:

Since Bij ∝ Aij from above, and (Aij)
2 = −Aij (using again n2

1 + n2
2 + n2

3 = 1), the

desired substitution can be made, and ~Da · ~Db = 0.
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Chapter 8

From the eighth chapter the exercise 8.1 is solved.

Exercise 8.1 Excellent conductor

Consider the electric and magnetic fields in the surface region of an excellent conductor in
the aproximation of Section 8.1, where the skin depth is very small compared to the radii of
curvature of the surface or the scale of significant spatial variation of the fields just outside.

(a) For a single frequency component, show that the magnetic field ~H and the current density
~J are such that the time-averaged force per unit area of the surface from the conduction
current, is given by:

~f = −~nµc
4

∣∣∣ ~H‖∣∣∣2 , (156)

where ~H‖ is the peak parallel component of magnetic field at the surface µc is the
magnetic permeabillity of the conductor, and ~n is the outward normal at the surface.

(b) Repeat (a) but for an ideal conductor. Do you get the same result?

(c) Assume that the fields are a superposition of different frequencies (all high enough that
the approximation still hold). Show that the time-averaged force takes the same form

as in (a) with
∣∣∣ ~H‖∣∣∣2 replaced by 2

〈∣∣∣ ~H‖∣∣∣2〉, where the angle brackets 〈...〉 mean time

average.

(a) The force on a current ~J from a magnetic field ~B is ~F =
∫
V
~J × ~B d3x. Hence the

force per unit area is:

d~F

d ~A
= −

∫
~J × ~B dξ = σµ

∫
~E × ~H dξ, (157)

using Ohm’s law and the definition of the ~H field. The overall sign changes since ξ is
directed opposite to the normal. Following the discussion of time averaged Poynting
vectors in Jackson p. 258-265, it is clear that the time average of the above quantity
is:

~f = −1

2
σµc

∫ ∞
0

Re( ~E × ~H∗)dξ (158)

We now substitute in the solutions for ~H and ~E inside the conductor (Jackson eq.
8.9 and 8.10):

~f = −
√
µ3
cσω

8
((~n× ~H‖)× ~H‖)

∫ ∞
0

Re
(

(1− i)e−ξ/δeiξ/δe−ξ/δe−iξ/δ
)
dξ. (159)
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The triple product in the paranthesis becomes:

(~n× ~H‖)× ~H‖ = − ~H‖(~n× ~H‖) = −
(∣∣∣ ~H‖∣∣∣2 ~n− ( ~H‖ · ~n) ~H‖

)
= −

∣∣∣ ~H‖∣∣∣2 ~n. (160)

And the integral:∫ ∞
0

Re
(

(1− i)e−ξ/δeiξ/δe−ξ/δe−iξ/δ
)
dξ =

∫ ∞
0

e2ξ/δdξ = −δ
2
. (161)

Putting it all together:

~f = −
√
µ3
cσω

8

∣∣∣ ~H‖∣∣∣2 ~n√ 1

2µcωσ

= −~nµc
4

∣∣∣ ~H‖∣∣∣2 . (162)

(b) If the conductor is perfect, we do not have any current inside the conductor. In other
words, we only have a surface current ~K = n̂× ~H (and no integral). Thus:

d~F

d ~A
=

1

2
~K × ~B∗ =

1

2
(n̂× ~H)× µ ~H∗ = −µ

2
n̂
∣∣∣ ~H‖∣∣∣2 (163)

(c) From Jackson p. 264. the time averaging gives:〈
| ~H|2

〉
=

1

2
Re( ~H · ~H∗). (164)

But now the fields are superpositions of several frequencies, and thus:

〈
| ~H|2

〉
=

1

2
Re

∑
i,j

HiH
∗
j

〈
e−i(ωi−ωj)t

〉 =
1

2
| ~H|2. (165)

The rest of the derivation is completely analogous to part (a). Thus
∣∣∣ ~H‖∣∣∣2 must be

replaced by 2

〈∣∣∣ ~H‖∣∣∣2〉 in equation (162).
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Chapter 9

From the ninth chapter the exercises 9.1, 9.8 and 9.16 are solved.

Exercise 9.1

A common textbook example of a radiating system (see Problem 9.2) is a configuration of
charges fixed relative to each other but in rotation. The charge density is obviously a function
of time, but it is not in the form of (9.1).

(a) Show that for rotating charges one alternative is to calculate real time-dependent multi-
pole moments using ρ(~x, t) directly and then compute the multipole moments for a given
harmonic frequency with the convention of (9.1) by inspection or Fourier decomposition
of the time-dependent moments. Note that care must be taken when calculating qlm(t)
to form linear combinations that are real before making the connection.

(b) Consider a charge density ρ(~x, t) that is periodic in time with period T = 2π/ω0. By
making a Fourier series expansion, show that it can be written as:

ρ(~x, t) = ρ0(~x) +

∞∑
n=1

Re
[
2ρn(~x)e−inω0t

]
, (166)

where:

ρn(~x) =
1

T

∫ T

0

ρ(~x, t)einω0tdt. (167)

This shows explicitly how to establish connection with (9.1).

(c) For a single charge q rotating about the origin in the x− y plane in a circle of radius R
at constant angular speed ω0, calculate the l = 0 and l = 1 multipole moments by the
methods of parts (a) and (b) and compare. In method (b) express the charge density
ρn(x) in cylindrical coordinates. Are there higher multipoles, for example, quadrupole?
At what frequencies?

(a) The charge density in the co-rotating coordinate system is in full generality:

ρ(r, θ, φ∗) = ρ(r, θ, φ− ωt). (168)

For the specific configuration in exercise (9.2) the charge density takes the form (with
qi = ±1, depending on what corner we are in):

ρ(r, θ, φ− ωt) =

4∑
i=1

qi
r2 sin(θ)

δ(θ − θi)δ(r − ri)δ(φ− φi), (169)
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but the following considerations can be done in general for any rigid, rotating charge
distribution.

Inserting in the equation for the multipole moment (Jackson (4.3)) yields:

qlm(t) =

∫
Y ∗lm(θ′, φ′ − ωt)r′lρ(r′, θ′, φ′ − ωt)dr′dφ′dθ′. (170)

Since the φ-dependence of a spherical harmonic is always in the form of a complex
exponential, the time dependence factorizes:

qlm(t) =

∫
Y ∗lm(θ′, φ′)r′lρ(r′, θ′, φ′)dr′dφ′dθ′ exp(−imωt) = q0

lm exp(−imωt), (171)

where q0
lm is the fixed time multipole moment (at t = 0). For the sample case of

equation (169) the fixed time multipole moment becomes:

q0
lm =

4∑
i=1

rliqiY
∗
lm(θi, φi). (172)

(b) Fourier series expansion of ρ(~x, t) yields:

ρ(~x, t) =
∞∑

n=−∞
ρn(~x) exp(−inωt), with ρn(~x) =

1

T

∫ T

0
ρ(~x, t) exp(iωt)dt. (173)

Separating the n = 0, n < 0 and n > 0 parts, and noting that ρ−n = ρ∗n since physical
quantities are always real:

ρ(~x, t) = ρ0 +
−1∑

n=−∞
ρn(~x) exp(−inω0t) +

∞∑
n=1

ρn(~x) exp(−inω0t)

= ρ0 +

∞∑
n=1

(ρ∗n exp(inω0t) + ρn exp(−inω0t))

= ρ0 +

∞∑
n=1

Re [2ρn exp(−inω0t)] ,

(174)

which is the desired result.

(c) First method (a). The charge distribution in the co-moving coordinate system is:

ρ(r, θ, φ− ωt) = qδ(r −R)δ(cos(θ))δ(φ). (175)
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Thus the fixed time multipole moment is:

q0
lm =

∫
r′lY ∗lm(θ′, φ′)ρ(r, θ′, φ′)dr′dθ′dφ′

= −
∫
r′lY ∗lm(θ′, φ′)ρ(r, θ′, φ′)

1

sin(θ)
dr′d cos(θ)dφ′

= −qRlY ∗lm(π/2, 0).

(176)

As the time dependent multipole moment is just qlm(t) = q0
lm exp(−imωt), we have

(using the table in Jackson p. 109):

q00(t) = −qY ∗00(π/2, 0) = −q 1√
4π

q11(t) = −qRY ∗11(π/2, 0) exp(−iωt) = qR

√
3

8π
exp(−iωt)

q10(t) = −qRY ∗10(π/2, 0) = −qR
√

3

4π
cos(π/2) = 0

q1−1(t) = −qRY ∗1−1(π/2, 0) exp(iωt) = −qR(−1)1Y11(π/2, 0) exp(iωt)

= −qR
√

3

8π
exp(iωt)

(177)

With method (b) first ρn is calculated:

ρn =
ω0

2π

∫ 2π/ω0

0
ρ(~x, t) exp(inω0t)dt

=
ω0

2π

∫ 2π/ω0

0

q

R2
δ(r −R)δ(cos(θ))δ(φ− ω0t)dt =

q

2πR2
δ(r −R)δ(cos(θ)) exp(inφ).

(178)

This is plugged in to the multipole moment equation:

qlm =
q

2πR2

∫
r2+lY ∗lm(θ, φ)δ(r −R)δ(cos(θ)) exp(inφ)drd cos θdφ

= −qRlY ∗lm(π/2, 0) if m = n, 0 otherwise,

(179)

which agrees with the above for m = n.

Higher orders are present as long as the spherical harmonic function is non-vanishing,
i.e. Plm(0) 6= 0

Exercise 9.8
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(a) Show that a classical oscillating dipole ~p with fields given by (9.18) radiates electromag-
netic angular momentum to infinity at the rate:

d~L

dt
=

k3

12πε0
Im[~p∗ × ~p]. (180)

(b) What is the ratio of angular momentum radiated to energy radiated? Interpret.

(c) For a charge e rotating in the x− y plane at a radius a and angular speed ω, show that
there is only a z component of radiated angular momentum with magnitude dLz/dt =
e3k3a2/6πε0. What about a charge oscillating along the z axis?

(d) What are the results corresponding to parts (a) and (b) for magnetic dipole radiation?

Hint: The electromagnetic angular momentum density comes from more than the transverse
(radiation zone) components of the fields.

(a) The angular momentum density is:

~m = ~r ×
(

1

2c2
~E × ~H∗

)
=

1

2c2

(
~E(~r · ~H∗)− ~H∗(~r · ~E)

)
=

1

2c2
~H∗(~r · ~E),

(181)

as ~r · ~H∗ = 0. Meanwhile, using in general that:

~a · ((~a×~b)× ~a) = ~a · (−(~a ·~b)~a+ (~a · ~a)~b) = −(~a ·~b)a2 + a2(~a ·~b) = 0, (182)

such that:

~r · ~E = r~n · ~E

=
1

4πε0

(
k2~n · ((~n× ~p)× ~n) exp(ikr) + ~n · (3~n(~n · ~p)− ~p

(
1

r2
− ik

r

)
exp(ikr))

)
=

exp(ikr)

4πε0

(
(3(~n · ~p)− (~n · ~p))

(
1

r2
− ik

r

))
=

exp(ikr)

2πε0
(~n · ~p)

(
1

r2
− ik

r

)
.

(183)

Inserting above gives:

~m =
ik3

16π2ε0cr2

(
1 +

1

k2r2

)
(~n · ~p)(~n× ~p∗), (184)

which should be integrated over a sphere at radius r to give the result:

d~L

dt
=

∫
~mdΣ. (185)
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(b) The radiated energy is simply the total power P = c2Z0k4

12π |~p|
2, and the ratio is thus:

1

P

d~L

dt
=

1

c2Z0ε0k

Im (~p× ~p∗)
|~p|2

=
1

ω

Im (~p× ~p∗)
|~p|2

, (186)

which is seen to vanish for high frequencies. Thus high frequencies favours radiation
of energy over radiation of angular momentum.

(c) The charge density is:

ρ(~x, t) = eδ(x− a cos(ωt))δ(y − a sin(ωt))δ(x). (187)

Inserting into Jackson eq. 9.17 gives:

~p =

∫
~xρd3x = ea(x̂ cos(ωt) + ŷ sin(ωt)). (188)

By inserting a mock complex part eai(ŷ cos(ωt)− x̂ sin(ωt)), this is rewritten as:

~p = eaRe ((x̂+ iŷ) exp(−iωt)) . (189)

As only the magnitude of d~L/dt is wanted, the time dependent part is omitted, and
the rest is inserted in the answer from part (a):

d~L

dt
=

k3

12πε0
Im ((ea(x̂+ iŷ)∗ × ea(x̂+ iŷ))) =

e2a2k3

6πε0
. (190)

In the case of a charge oscillating on the z-axis, the charge distribution will contain
delta functions δ(x) and δ(y). Therefore ~p ≈ ẑ, and the cross product in the last
equation will be zero.

(c) The result in part (a) for dipole radiation can be obtained by substituting ~p 7→ ~m/c
resulting in:

d~L

dt
=

k3

12πε0c2
Im (~m∗ × ~m) . (191)

The change in total emitted power is analogously |~p|2 7→ |~m|2/c2, and thus the result
in part (b) is unchanged up to the change ~p 7→ ~m.

Exercise 9.16

A thin linear antenna of length d is excited in such a way that the sinusoidal current makes
a full wavelength of oscillation as shown in the figure.
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(a) Calculate exactly the power radiated per unit solid angle and plot the angular distribution
of radiation.

(b) Determine the total power radiated and find a numerical value for the radiation resistance.

(a) The current in the rod is sinusoidal: I(z) = I0 sin(kz). Writing this as the total current
distribution is:

~J(~x) = I0 sin(kz)δ(x)δ(y)ẑ. (192)

From Jackson eq. (9.8) the vector potential is:

lim
kr→∞

~A(~x) =
µ0

4π

exp ikr

r

∫
~J(~x′) exp(−ik~n · ~x′)d3x′

= I0
µ0

4π

exp ikr

r
ẑ

∫ d/2

−d/2
sin(kz′) exp(−ikz′ cos(θ))dz′

= I0
µ0

4π

exp ikr

r
ẑ

∫ d/2

−d/2
sin(kz′) cos(kz′ cos(θ)) + i sin(kz′) sin(kz′ cos(θ))dz′.

(193)

The first part of the integral is an odd function, and is therefore zero when integrated
over the given interval. The remaining integral can be looked up and the vector
potential becomes:

lim
kr→∞

~A(~x) = I0
µ0

4π

exp ikr

r
iẑ

1

k − cos2(θ)k
·

(2 cos(θ) sin(d/2k) cos(cos(θ)d/2k)− 2 cos(d/2k) sin(cos(θ)d/2k))

(194)

Inserting k = 2π
d the first term in the parenthesis vanishes, and the rest of the

expression is (using also 1− cos2(θ) = sin2(θ)):

lim
kr→∞

~A(~x) = −I0
µ0

4π2

exp(ikr)

r
diẑ

sin(cos(θ)π)

sin2(θ)
. (195)

The dipole moment becomes (Jackson eq. 9.16):

~p = − 4π

iµ0ω

r

exp(ikr)
~A(~x)

=
2I0

k2c
ẑ

sin(cos(θ)π)

sin2(θ)
.

(196)
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Figure 8: The power radiation distribution from exercise 9.16 in a regular (left) plot and
a polar (right) plot.

And the angular distribution (Jackson eq. 9.23):

dP

dΩ
=
I2

0Z0

8π2

sin2(cos(θ)π)

sin2(θ)
, , (197)

which is seen in figure (left) as a regular plot, and much nicer in figure (right) as a
polar plot.

(b) The total power radiated is:

P =
I2

0Z0

8π2

∫ 2π

0

∫ 1

−1

sin2(cos(θ)π)

sin2(θ)
dφd cos(θ)

=
I2

0Z0

4π2

∫ 1

−1

sin2(πx)

1− x2
dx ≈ 1.5572

I0Z0

4π
.

(198)

And the radiation resistance is:

Rrad =
P

I2
0/2

=
1.5572Z0

2π
= 93.39Ω. (199)
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