Spaces:
Runtime error
Runtime error
File size: 7,212 Bytes
ab2028a a3ff20d a09b6d4 a2cc35d 55b6a72 06a38bb a3ff20d a09b6d4 ff28ea7 06a38bb ff28ea7 f98abe0 8bb3175 7a50d25 e74a6d5 7a50d25 dec3ffb 7a50d25 dec3ffb 8bb3175 7a50d25 a3ff20d f98abe0 ca883bf f98abe0 662683c a3ff20d f98abe0 8e5029d f49c4dc d4b4467 f49c4dc d4b4467 0cd86bb 92bdd1d e71a574 92bdd1d c853766 d4b4467 a2cc35d 06a38bb ff28ea7 a3ff20d ff28ea7 a3ff20d ff28ea7 a3ff20d 06a38bb ff28ea7 a3ff20d ff28ea7 a3ff20d ff28ea7 06a38bb ff28ea7 7d98fee ff28ea7 55b6a72 ff28ea7 a3ff20d b6dfb48 700258a 8e5029d 5b25129 8e5029d 23028aa 8e5029d 5b25129 23028aa 8e5029d 8f67fbb 8e5029d 5b25129 23028aa 8e5029d 700258a a3ff20d ff28ea7 55b6a72 f49c4dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
import streamlit as st
import json
import matplotlib.pyplot as plt
import time
from PIL import Image
from streamlit_image_comparison import image_comparison
st.set_page_config(layout="wide")
# HIN Number +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
from SPARQLWrapper import SPARQLWrapper, JSON
from streamlit_agraph import agraph, TripleStore, Node, Edge, Config
import json
# Function to load JSON data
def load_data(filename):
with open(filename, 'r') as file:
data = json.load(file)
return data
# Dictionary for color codes
color_codes = {
"residential": "#ADD8E6",
"commercial": "#90EE90",
"community_facilities": "#FFFF00",
"school": "#FFFF00",
"healthcare_facility": "#FFFF00",
"green_space": "#90EE90",
"utility_infrastructure": "#90EE90",
"emergency_services": "#FF0000",
"cultural_facilities": "#D8BFD8",
"recreational_facilities": "#D8BFD8",
"innovation_center": "#90EE90",
"elderly_care_home": "#FFFF00",
"childcare_centers": "#FFFF00",
"places_of_worship": "#D8BFD8",
"event_spaces": "#D8BFD8",
"guest_housing": "#FFA500",
"pet_care_facilities": "#FFA500",
"public_sanitation_facilities": "#A0A0A0",
"environmental_monitoring_stations": "#90EE90",
"disaster_preparedness_center": "#A0A0A0",
"outdoor_community_spaces": "#90EE90",
# Add other types with their corresponding colors
}
# Function to draw the grid with optional highlighting
def draw_grid(data, highlight_coords=None):
fig, ax = plt.subplots(figsize=(12, 12))
nrows, ncols = data['size']['rows'], data['size']['columns']
ax.set_xlim(0, ncols)
ax.set_ylim(0, nrows)
ax.set_xticks(range(ncols+1))
ax.set_yticks(range(nrows+1))
ax.grid(True)
# Draw roads with a specified grey color
road_color = "#606060" # Light grey; change to "#505050" for dark grey
for road in data.get('roads', []): # Check for roads in the data
start, end = road['start'], road['end']
# Determine if the road is vertical or horizontal based on start and end coordinates
if start[0] == end[0]: # Vertical road
for y in range(min(start[1], end[1]), max(start[1], end[1]) + 1):
ax.add_patch(plt.Rectangle((start[0], nrows-y-1), 1, 1, color=road['color']))
else: # Horizontal road
for x in range(min(start[0], end[0]), max(start[0], end[0]) + 1):
ax.add_patch(plt.Rectangle((x, nrows-start[1]-1), 1, 1, color=road['color']))
# Draw buildings
for building in data['buildings']:
coords = building['coords']
b_type = building['type']
size = building['size']
color = color_codes.get(b_type, '#FFFFFF') # Default color is white if not specified
if highlight_coords and (coords[0], coords[1]) == tuple(highlight_coords):
highlighted_color = "#FFD700" # Gold for highlighting
ax.add_patch(plt.Rectangle((coords[1], nrows-coords[0]-size), size, size, color=highlighted_color, edgecolor='black', linewidth=2))
else:
ax.add_patch(plt.Rectangle((coords[1], nrows-coords[0]-size), size, size, color=color, edgecolor='black', linewidth=1))
ax.text(coords[1]+0.5*size, nrows-coords[0]-0.5*size, b_type, ha='center', va='center', fontsize=8, color='black')
ax.set_xlabel('Columns')
ax.set_ylabel('Rows')
ax.set_title('Village Layout with Color Coding')
return fig
# Tabs +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# Create the main app with three tabs
tab1, tab2, tab3 = st.tabs(["Interpretive Number","Green Village", "Control Room"])
with tab1:
st.header("Engineering Tools")
# Divide the page into three columns
col1, col2 = st.columns(2)
with col1:
st.header("Human Interpretive Number (HIN)")
st.write("")
"How do LLMs interpret us and over “a period” of time what is the result of our interaction with them?"
st.write("")
image_comparison(
img1="./data/robot.jpg",
img2="./data/life.jpg",
label1="What the LMM Sees (Simulated Life)",
label2="What we See (Real Life)",
)
with col2:
st.header("Custom GPT Engineering Tools")
with tab2:
st.header("Green Smart Village Application")
# Divide the page into three columns
col1, col2, col3 = st.columns(3)
with col1:
st.header("Today's Agenda")
st.write("1. Morning Meeting\n2. Review Project Plans\n3. Lunch Break\n4. Site Visit\n5. Evening Wrap-up")
st.header("Agent Advisors")
st.write("Would you like to optimize your HIN number?")
st.header("My Incentive")
st.write("Total incentive for HIN optimization")
with col2:
st.header("Green Smart Village Layout")
data = load_data('grid.json') # Ensure this path is correct
# Dropdown for selecting a building
building_options = [f"{bld['type']} at ({bld['coords'][0]}, {bld['coords'][1]})" for bld in data['buildings']]
selected_building = st.selectbox("Select a building to highlight:", options=building_options)
selected_index = building_options.index(selected_building)
selected_building_coords = data['buildings'][selected_index]['coords']
# Draw the grid with the selected building highlighted
fig = draw_grid(data, highlight_coords=selected_building_coords)
st.pyplot(fig)
# Assuming sensors are defined in your data, display them
sensors = data['buildings'][selected_index].get('sensors', [])
st.write(f"Sensors in selected building: {', '.join(sensors)}")
with col3:
st.header("Check Your HIN Number")
# config = Config(height=400, width=400, nodeHighlightBehavior=True, highlightColor="#F7A7A6", directed=True, collapsible=True)
if sensors: # Check if there are sensors to display
graph_store = TripleStore()
building_name = f"{data['buildings'][selected_index]['type']} ({selected_building_coords[0]}, {selected_building_coords[1]})"
# Iterate through each sensor and create a triple linking it to the building
for sensor in sensors:
sensor_id = f"Sensor: {sensor}" # Label for sensor nodes
# Correctly add the triple without named arguments
graph_store.add_triple(building_name, "has_sensor", sensor_id)
# Configuration for the graph visualization
agraph_config = Config(height=300, width=300, nodeHighlightBehavior=True, highlightColor="#F7A7A6", directed=True, collapsible=True)
# Display the graph
agraph(nodes=graph_store.getNodes(), edges=graph_store.getEdges(), config=agraph_config)
hin_number = st.text_input("Enter your HIN number:")
if hin_number:
st.write("HIN number details...") # Placeholder for actual HIN number check
with tab3:
st.header("Control Room")
|