Spaces:
Sleeping
Sleeping
import os | |
from llama_cpp import Llama | |
from llama_index.core import VectorStoreIndex, Settings, SimpleDirectoryReader, load_index_from_storage, StorageContext | |
from llama_index.core.node_parser import SentenceSplitter | |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding | |
Settings.llm = None | |
class Backend: | |
def __init__(self): | |
self.llm = None | |
self.llm_model = None | |
self.embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5") | |
self.PERSIST_DIR = "./db" | |
os.makedirs(self.PERSIST_DIR, exist_ok=True) | |
def load_model(self, model_path): | |
self.llm = Llama( | |
model_path=f"models/{model_path}", | |
flash_attn=True, | |
n_gpu_layers=81, | |
n_batch=1024, | |
n_ctx=8192, | |
) | |
self.llm_model = model_path | |
def create_index_for_query_engine(self, matched_path): | |
print(f"Attempting to read files from: {matched_path}") | |
documents = [] | |
for root, dirs, files in os.walk(matched_path): | |
for file in files: | |
file_path = os.path.join(root, file) | |
try: | |
with open(file_path, 'r', encoding='utf-8') as f: | |
content = f.read() | |
doc = Document(text=content, metadata={"source": file_path}) | |
documents.append(doc) | |
print(f"Successfully read file: {file_path}") | |
except Exception as e: | |
print(f"Error reading file {file_path}: {str(e)}") | |
print(f"Number of documents loaded: {len(documents)}") | |
storage_context = StorageContext.from_defaults() | |
nodes = SentenceSplitter(chunk_size=256, chunk_overlap=64, paragraph_separator="\n\n").get_nodes_from_documents(documents) | |
index = VectorStoreIndex(nodes, embed_model=self.embed_model) | |
query_engine = index.as_query_engine( | |
similarity_top_k=4, response_mode="tree_summarize" | |
) | |
index.storage_context.persist(persist_dir=self.PERSIST_DIR) | |
return query_engine | |
# here we're leveraging an already constructed and stored FAISS index | |
def load_index_for_query_engine(self): | |
storage_context = StorageContext.from_defaults(persist_dir=self.PERSIST_DIR) | |
index = load_index_from_storage(storage_context, embed_model=self.embed_model) | |
query_engine = index.as_query_engine( | |
similarity_top_k=4, response_mode="tree_summarize" | |
) | |
return query_engine | |
def generate_prompt(self, query_engine, message): | |
relevant_chunks = query_engine.retrieve(message) | |
print(f"Found: {len(relevant_chunks)} relevant chunks") | |
prompt = "Considera questo come tua base di conoscenza personale:\n==========Conoscenza===========\n" | |
for idx, chunk in enumerate(relevant_chunks): | |
print(f"{idx + 1}) {chunk.text[:64]}...") | |
prompt += chunk.text + "\n\n" | |
prompt += "\n======================\nDomanda: " + message | |
return prompt |