Spaces:
Sleeping
Sleeping
import spaces | |
import os | |
import gradio as gr | |
from models import download_models | |
from rag_backend import Backend | |
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType | |
from llama_cpp_agent.providers import LlamaCppPythonProvider | |
from llama_cpp_agent.chat_history import BasicChatHistory | |
from llama_cpp_agent.chat_history.messages import Roles | |
import cv2 | |
# get the models | |
huggingface_token = os.environ.get('HF_TOKEN') | |
download_models(huggingface_token) | |
documents_paths = { | |
'blockchain': 'data/blockchain', | |
'metaverse': 'data/metaverse', | |
'payment': 'data/payment' | |
} | |
# initialize backend | |
backend = Backend() | |
cv2.setNumThreads(1) | |
def respond( | |
message, | |
history: list[list[str, str]], | |
model, | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
top_k, | |
repeat_penalty, | |
selected_topic | |
): | |
chat_template = MessagesFormatterType.GEMMA_2 | |
print("HISTORY SO FAR ", history) | |
print("Selected topic:", selected_topic) | |
if selected_topic: | |
query_engine = backend.create_index_for_query_engine(documents_paths[selected_topic]) | |
message = backend.generate_prompt(query_engine, message) | |
gr.Info(f"Relevant context indexed from {selected_topic} docs...") | |
else: | |
query_engine = backend.load_index_for_query_engine() | |
message = backend.generate_prompt(query_engine, message) | |
gr.Info("Relevant context extracted from db...") | |
# Load model only if it's not already loaded or if a new model is selected | |
if backend.llm is None or backend.llm_model != model: | |
try: | |
backend.load_model(model) | |
except Exception as e: | |
return f"Error loading model: {str(e)}" | |
provider = LlamaCppPythonProvider(backend.llm) | |
agent = LlamaCppAgent( | |
provider, | |
system_prompt=f"{system_message}", | |
predefined_messages_formatter_type=chat_template, | |
debug_output=True | |
) | |
settings = provider.get_provider_default_settings() | |
settings.temperature = temperature | |
settings.top_k = top_k | |
settings.top_p = top_p | |
settings.max_tokens = max_tokens | |
settings.repeat_penalty = repeat_penalty | |
settings.stream = True | |
messages = BasicChatHistory() | |
# add user and assistant messages to the history | |
for user_msg, assistant_msg in history: | |
messages.add_message({'role': Roles.user, 'content': user_msg}) | |
messages.add_message({'role': Roles.assistant, 'content': assistant_msg}) | |
try: | |
stream = agent.get_chat_response( | |
message, | |
llm_sampling_settings=settings, | |
chat_history=messages, | |
returns_streaming_generator=True, | |
print_output=False | |
) | |
outputs = "" | |
for output in stream: | |
outputs += output | |
yield outputs | |
except Exception as e: | |
yield f"Error during response generation: {str(e)}" | |
def select_topic(topic): | |
return gr.update(visible=True), topic | |
with gr.Blocks(css=""" | |
.gradio-container { | |
background-color: #B9D9EB; | |
color: #003366; | |
} | |
""") as demo: | |
gr.Markdown("# Odi, l'assistente ricercatore degli Osservatori") | |
with gr.Row(): | |
blockchain_btn = gr.Button("๐ Blockchain", scale=1) | |
metaverse_btn = gr.Button("๐ Metaverse", scale=1) | |
payment_btn = gr.Button("๐ณ Payment", scale=1) | |
selected_topic = gr.State(value="") | |
chatbot = gr.Chatbot( | |
scale=1, | |
likeable=False, | |
show_copy_button=True, | |
visible=False | |
) | |
with gr.Row(): | |
msg = gr.Textbox( | |
scale=4, | |
show_label=False, | |
placeholder="Inserisci il tuo messaggio...", | |
container=False, | |
) | |
submit_btn = gr.Button("Invia", scale=1) | |
with gr.Accordion("Advanced Options", open=False): | |
model = gr.Dropdown([ | |
'Meta-Llama-3.1-8B-Instruct-Q5_K_M.gguf', | |
'Mistral-Nemo-Instruct-2407-Q5_K_M.gguf', | |
'gemma-2-2b-it-Q6_K_L.gguf', | |
'openchat-3.6-8b-20240522-Q6_K.gguf', | |
'Llama-3-Groq-8B-Tool-Use-Q6_K.gguf', | |
'MiniCPM-V-2_6-Q6_K.gguf', | |
'llama-3.1-storm-8b-q5_k_m.gguf', | |
'orca-2-7b-patent-instruct-llama-2-q5_k_m.gguf' | |
], | |
value="gemma-2-2b-it-Q6_K_L.gguf", | |
label="Model" | |
) | |
system_message = gr.Textbox(value="""Solamente all'inizio, presentati come Odi, un assistente ricercatore italiano creato dagli Osservatori del Politecnico di Milano e specializzato nel fornire risposte precise e pertinenti solo ad argomenti di innovazione digitale. | |
Nel fornire la risposta cita il report da cui la hai ottenuta. | |
Utilizza la cronologia della chat o il contesto fornito per aiutare l'utente a ottenere una risposta accurata. | |
Non rispondere mai a domande che non sono pertinenti a questi argomenti.""", label="System message") | |
max_tokens = gr.Slider(minimum=1, maximum=4096, value=3048, step=1, label="Max tokens") | |
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=1.2, step=0.1, label="Temperature") | |
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p") | |
top_k = gr.Slider(minimum=0, maximum=100, value=30, step=1, label="Top-k") | |
repeat_penalty = gr.Slider(minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty") | |
blockchain_btn.click(lambda: select_topic("blockchain"), inputs=None, outputs=[chatbot, selected_topic]) | |
metaverse_btn.click(lambda: select_topic("metaverse"), inputs=None, outputs=[chatbot, selected_topic]) | |
payment_btn.click(lambda: select_topic("payment"), inputs=None, outputs=[chatbot, selected_topic]) | |
submit_btn.click( | |
respond, | |
inputs=[msg, chatbot, model, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty, selected_topic], | |
outputs=chatbot | |
) | |
msg.submit( | |
respond, | |
inputs=[msg, chatbot, model, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty, selected_topic], | |
outputs=chatbot | |
) | |
if __name__ == "__main__": | |
demo.launch() |