eagleswim commited on
Commit
2183e4a
1 Parent(s): d9fa0d6

Create custome_pipeline.py

Browse files
Files changed (1) hide show
  1. custome_pipeline.py +168 -0
custome_pipeline.py ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+ from diffusers import FluxPipeline, FlowMatchEulerDiscreteScheduler
4
+ from typing import Any, Dict, List, Optional, Union
5
+ from PIL import Image
6
+
7
+ # Constants for shift calculation
8
+ BASE_SEQ_LEN = 256
9
+ MAX_SEQ_LEN = 4096
10
+ BASE_SHIFT = 0.5
11
+ MAX_SHIFT = 1.2
12
+
13
+ # Helper functions
14
+ def calculate_timestep_shift(image_seq_len: int) -> float:
15
+ """Calculates the timestep shift (mu) based on the image sequence length."""
16
+ m = (MAX_SHIFT - BASE_SHIFT) / (MAX_SEQ_LEN - BASE_SEQ_LEN)
17
+ b = BASE_SHIFT - m * BASE_SEQ_LEN
18
+ mu = image_seq_len * m + b
19
+ return mu
20
+
21
+ def prepare_timesteps(
22
+ scheduler: FlowMatchEulerDiscreteScheduler,
23
+ num_inference_steps: Optional[int] = None,
24
+ device: Optional[Union[str, torch.device]] = None,
25
+ timesteps: Optional[List[int]] = None,
26
+ sigmas: Optional[List[float]] = None,
27
+ mu: Optional[float] = None,
28
+ ) -> (torch.Tensor, int):
29
+ """Prepares the timesteps for the diffusion process."""
30
+ if timesteps is not None and sigmas is not None:
31
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed.")
32
+
33
+ if timesteps is not None:
34
+ scheduler.set_timesteps(timesteps=timesteps, device=device)
35
+ elif sigmas is not None:
36
+ scheduler.set_timesteps(sigmas=sigmas, device=device)
37
+ else:
38
+ scheduler.set_timesteps(num_inference_steps, device=device, mu=mu)
39
+
40
+ timesteps = scheduler.timesteps
41
+ num_inference_steps = len(timesteps)
42
+ return timesteps, num_inference_steps
43
+
44
+ # FLUX pipeline function
45
+ class FluxWithCFGPipeline(FluxPipeline):
46
+ """
47
+ Extends the FluxPipeline to yield intermediate images during the denoising process
48
+ with progressively increasing resolution for faster generation.
49
+ """
50
+ @torch.inference_mode()
51
+ def generate_images(
52
+ self,
53
+ prompt: Union[str, List[str]] = None,
54
+ prompt_2: Optional[Union[str, List[str]]] = None,
55
+ height: Optional[int] = None,
56
+ width: Optional[int] = None,
57
+ num_inference_steps: int = 4,
58
+ timesteps: List[int] = None,
59
+ guidance_scale: float = 3.5,
60
+ num_images_per_prompt: Optional[int] = 1,
61
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
62
+ latents: Optional[torch.FloatTensor] = None,
63
+ prompt_embeds: Optional[torch.FloatTensor] = None,
64
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
65
+ output_type: Optional[str] = "pil",
66
+ return_dict: bool = True,
67
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
68
+ max_sequence_length: int = 300,
69
+ ):
70
+ """Generates images and yields intermediate results during the denoising process."""
71
+ height = height or self.default_sample_size * self.vae_scale_factor
72
+ width = width or self.default_sample_size * self.vae_scale_factor
73
+
74
+ # 1. Check inputs
75
+ self.check_inputs(
76
+ prompt,
77
+ prompt_2,
78
+ height,
79
+ width,
80
+ prompt_embeds=prompt_embeds,
81
+ pooled_prompt_embeds=pooled_prompt_embeds,
82
+ max_sequence_length=max_sequence_length,
83
+ )
84
+
85
+ self._guidance_scale = guidance_scale
86
+ self._joint_attention_kwargs = joint_attention_kwargs
87
+ self._interrupt = False
88
+
89
+ # 2. Define call parameters
90
+ batch_size = 1 if isinstance(prompt, str) else len(prompt)
91
+ device = self._execution_device
92
+
93
+ # 3. Encode prompt
94
+ lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
95
+ prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
96
+ prompt=prompt,
97
+ prompt_2=prompt_2,
98
+ prompt_embeds=prompt_embeds,
99
+ pooled_prompt_embeds=pooled_prompt_embeds,
100
+ device=device,
101
+ num_images_per_prompt=num_images_per_prompt,
102
+ max_sequence_length=max_sequence_length,
103
+ lora_scale=lora_scale,
104
+ )
105
+ # 4. Prepare latent variables
106
+ num_channels_latents = self.transformer.config.in_channels // 4
107
+ latents, latent_image_ids = self.prepare_latents(
108
+ batch_size * num_images_per_prompt,
109
+ num_channels_latents,
110
+ height,
111
+ width,
112
+ prompt_embeds.dtype,
113
+ device,
114
+ generator,
115
+ latents,
116
+ )
117
+ # 5. Prepare timesteps
118
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
119
+ image_seq_len = latents.shape[1]
120
+ mu = calculate_timestep_shift(image_seq_len)
121
+ timesteps, num_inference_steps = prepare_timesteps(
122
+ self.scheduler,
123
+ num_inference_steps,
124
+ device,
125
+ timesteps,
126
+ sigmas,
127
+ mu=mu,
128
+ )
129
+ self._num_timesteps = len(timesteps)
130
+
131
+ # Handle guidance
132
+ guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float16).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None
133
+
134
+ # 6. Denoising loop
135
+ for i, t in enumerate(timesteps):
136
+ if self.interrupt:
137
+ continue
138
+
139
+ timestep = t.expand(latents.shape[0]).to(latents.dtype)
140
+
141
+ noise_pred = self.transformer(
142
+ hidden_states=latents,
143
+ timestep=timestep / 1000,
144
+ guidance=guidance,
145
+ pooled_projections=pooled_prompt_embeds,
146
+ encoder_hidden_states=prompt_embeds,
147
+ txt_ids=text_ids,
148
+ img_ids=latent_image_ids,
149
+ joint_attention_kwargs=self.joint_attention_kwargs,
150
+ return_dict=False,
151
+ )[0]
152
+
153
+ # Yield intermediate result
154
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
155
+ torch.cuda.empty_cache()
156
+
157
+ # Final image
158
+ return self._decode_latents_to_image(latents, height, width, output_type)
159
+ self.maybe_free_model_hooks()
160
+ torch.cuda.empty_cache()
161
+
162
+ def _decode_latents_to_image(self, latents, height, width, output_type, vae=None):
163
+ """Decodes the given latents into an image."""
164
+ vae = vae or self.vae
165
+ latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
166
+ latents = (latents / vae.config.scaling_factor) + vae.config.shift_factor
167
+ image = vae.decode(latents, return_dict=False)[0]
168
+ return self.image_processor.postprocess(image, output_type=output_type)[0]