eagleswim commited on
Commit
df66100
β€’
1 Parent(s): 3b854f1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +165 -2
app.py CHANGED
@@ -1,3 +1,166 @@
1
- import os
 
 
 
 
 
 
 
 
2
 
3
- exec(os.environ.get("myjava"))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import random
4
+ import spaces
5
+ import torch
6
+ import time
7
+ from diffusers import DiffusionPipeline, AutoencoderTiny
8
+ from diffusers.models.attention_processor import AttnProcessor2_0
9
+ from custom_pipeline import FluxWithCFGPipeline
10
 
11
+ torch.backends.cuda.matmul.allow_tf32 = True
12
+
13
+ # Constants
14
+ MAX_SEED = np.iinfo(np.int32).max
15
+ MAX_IMAGE_SIZE = 2048
16
+ DEFAULT_WIDTH = 1024
17
+ DEFAULT_HEIGHT = 1024
18
+ DEFAULT_INFERENCE_STEPS = 1
19
+
20
+ # Device and model setup
21
+ dtype = torch.float16
22
+ pipe = FluxWithCFGPipeline.from_pretrained(
23
+ "black-forest-labs/FLUX.1-schnell", torch_dtype=dtype
24
+ )
25
+ pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype)
26
+ pipe.to("cuda")
27
+ pipe.load_lora_weights('hugovntr/flux-schnell-realism', weight_name='schnell-realism_v2.3.safetensors', adapter_name="better")
28
+ pipe.set_adapters(["better"], adapter_weights=[1.0])
29
+ pipe.fuse_lora(adapter_name=["better"], lora_scale=1.0)
30
+ pipe.unload_lora_weights()
31
+
32
+ torch.cuda.empty_cache()
33
+
34
+ # Inference function
35
+ @spaces.GPU(duration=25)
36
+ def generate_image(prompt, seed=24, width=DEFAULT_WIDTH, height=DEFAULT_HEIGHT, randomize_seed=False, num_inference_steps=2, progress=gr.Progress(track_tqdm=True)):
37
+ if randomize_seed:
38
+ seed = random.randint(0, MAX_SEED)
39
+ generator = torch.Generator().manual_seed(int(float(seed)))
40
+
41
+ start_time = time.time()
42
+
43
+ # Only generate the last image in the sequence
44
+ img = pipe.generate_images(
45
+ prompt=prompt,
46
+ width=width,
47
+ height=height,
48
+ num_inference_steps=num_inference_steps,
49
+ generator=generator
50
+ )
51
+ latency = f"Latency: {(time.time()-start_time):.2f} seconds"
52
+ return img, seed, latency
53
+
54
+ # Example prompts
55
+ examples = [
56
+ "a tiny astronaut hatching from an egg on the moon",
57
+ "a cute white cat holding a sign that says hello world",
58
+ "an anime illustration of Steve Jobs",
59
+ "Create image of Modern house in minecraft style",
60
+ "photo of a woman on the beach, shot from above. She is facing the sea, while wearing a white dress. She has long blonde hair",
61
+ "Selfie photo of a wizard with long beard and purple robes, he is apparently in the middle of Tokyo. Probably taken from a phone.",
62
+ "Photo of a young woman with long, wavy brown hair tied in a bun and glasses. She has a fair complexion and is wearing subtle makeup, emphasizing her eyes and lips. She is dressed in a black top. The background appears to be an urban setting with a building facade, and the sunlight casts a warm glow on her face.",
63
+ ]
64
+
65
+ # --- Gradio UI ---
66
+ with gr.Blocks() as demo:
67
+ with gr.Column(elem_id="app-container"):
68
+ gr.Markdown("# 🎨 Realtime FLUX Image Generator")
69
+ gr.Markdown("Generate stunning images in real-time with Modified Flux.Schnell pipeline.")
70
+ gr.Markdown("<span style='color: red;'>Note: Sometimes it stucks or stops generating images (I don't know why). In that situation just refresh the site.</span>")
71
+
72
+ with gr.Row():
73
+ with gr.Column(scale=2.5):
74
+ result = gr.Image(label="Generated Image", show_label=False, interactive=False)
75
+ with gr.Column(scale=1):
76
+ prompt = gr.Text(
77
+ label="Prompt",
78
+ placeholder="Describe the image you want to generate...",
79
+ lines=3,
80
+ show_label=False,
81
+ container=False,
82
+ )
83
+ generateBtn = gr.Button("πŸ–ΌοΈ Generate Image")
84
+ enhanceBtn = gr.Button("πŸš€ Enhance Image")
85
+
86
+ with gr.Column("Advanced Options"):
87
+ with gr.Row():
88
+ realtime = gr.Checkbox(label="Realtime Toggler", info="If TRUE then uses more GPU but create image in realtime.", value=False)
89
+ latency = gr.Text(label="Latency")
90
+ with gr.Row():
91
+ seed = gr.Number(label="Seed", value=42)
92
+ randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
93
+ with gr.Row():
94
+ width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_WIDTH)
95
+ height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_HEIGHT)
96
+ num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=30, step=1, value=DEFAULT_INFERENCE_STEPS)
97
+
98
+ with gr.Row():
99
+ gr.Markdown("### 🌟 Inspiration Gallery")
100
+ with gr.Row():
101
+ gr.Examples(
102
+ examples=examples,
103
+ fn=generate_image,
104
+ inputs=[prompt],
105
+ outputs=[result, seed, latency],
106
+ cache_examples="lazy"
107
+ )
108
+
109
+ enhanceBtn.click(
110
+ fn=generate_image,
111
+ inputs=[prompt, seed, width, height],
112
+ outputs=[result, seed, latency],
113
+ show_progress="full",
114
+ queue=False,
115
+ concurrency_limit=None
116
+ )
117
+
118
+ generateBtn.click(
119
+ fn=generate_image,
120
+ inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps],
121
+ outputs=[result, seed, latency],
122
+ show_progress="full",
123
+ api_name="RealtimeFlux",
124
+ queue=False
125
+ )
126
+
127
+ def update_ui(realtime_enabled):
128
+ return {
129
+ prompt: gr.update(interactive=True),
130
+ generateBtn: gr.update(visible=not realtime_enabled)
131
+ }
132
+
133
+ realtime.change(
134
+ fn=update_ui,
135
+ inputs=[realtime],
136
+ outputs=[prompt, generateBtn],
137
+ queue=False,
138
+ concurrency_limit=None
139
+ )
140
+
141
+ def realtime_generation(*args):
142
+ if args[0]: # If realtime is enabled
143
+ return next(generate_image(*args[1:]))
144
+
145
+ prompt.submit(
146
+ fn=generate_image,
147
+ inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps],
148
+ outputs=[result, seed, latency],
149
+ show_progress="full",
150
+ queue=False,
151
+ concurrency_limit=None
152
+ )
153
+
154
+ for component in [prompt, width, height, num_inference_steps]:
155
+ component.input(
156
+ fn=realtime_generation,
157
+ inputs=[realtime, prompt, seed, width, height, randomize_seed, num_inference_steps],
158
+ outputs=[result, seed, latency],
159
+ show_progress="hidden",
160
+ trigger_mode="always_last",
161
+ queue=False,
162
+ concurrency_limit=None
163
+ )
164
+
165
+ # Launch the app
166
+ demo.queue().launch(share=False, show_api=False, debug=False)