Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,166 @@
|
|
1 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import random
|
4 |
+
import spaces
|
5 |
+
import torch
|
6 |
+
import time
|
7 |
+
from diffusers import DiffusionPipeline, AutoencoderTiny
|
8 |
+
from diffusers.models.attention_processor import AttnProcessor2_0
|
9 |
+
from custom_pipeline import FluxWithCFGPipeline
|
10 |
|
11 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
12 |
+
|
13 |
+
# Constants
|
14 |
+
MAX_SEED = np.iinfo(np.int32).max
|
15 |
+
MAX_IMAGE_SIZE = 2048
|
16 |
+
DEFAULT_WIDTH = 1024
|
17 |
+
DEFAULT_HEIGHT = 1024
|
18 |
+
DEFAULT_INFERENCE_STEPS = 1
|
19 |
+
|
20 |
+
# Device and model setup
|
21 |
+
dtype = torch.float16
|
22 |
+
pipe = FluxWithCFGPipeline.from_pretrained(
|
23 |
+
"black-forest-labs/FLUX.1-schnell", torch_dtype=dtype
|
24 |
+
)
|
25 |
+
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype)
|
26 |
+
pipe.to("cuda")
|
27 |
+
pipe.load_lora_weights('hugovntr/flux-schnell-realism', weight_name='schnell-realism_v2.3.safetensors', adapter_name="better")
|
28 |
+
pipe.set_adapters(["better"], adapter_weights=[1.0])
|
29 |
+
pipe.fuse_lora(adapter_name=["better"], lora_scale=1.0)
|
30 |
+
pipe.unload_lora_weights()
|
31 |
+
|
32 |
+
torch.cuda.empty_cache()
|
33 |
+
|
34 |
+
# Inference function
|
35 |
+
@spaces.GPU(duration=25)
|
36 |
+
def generate_image(prompt, seed=24, width=DEFAULT_WIDTH, height=DEFAULT_HEIGHT, randomize_seed=False, num_inference_steps=2, progress=gr.Progress(track_tqdm=True)):
|
37 |
+
if randomize_seed:
|
38 |
+
seed = random.randint(0, MAX_SEED)
|
39 |
+
generator = torch.Generator().manual_seed(int(float(seed)))
|
40 |
+
|
41 |
+
start_time = time.time()
|
42 |
+
|
43 |
+
# Only generate the last image in the sequence
|
44 |
+
img = pipe.generate_images(
|
45 |
+
prompt=prompt,
|
46 |
+
width=width,
|
47 |
+
height=height,
|
48 |
+
num_inference_steps=num_inference_steps,
|
49 |
+
generator=generator
|
50 |
+
)
|
51 |
+
latency = f"Latency: {(time.time()-start_time):.2f} seconds"
|
52 |
+
return img, seed, latency
|
53 |
+
|
54 |
+
# Example prompts
|
55 |
+
examples = [
|
56 |
+
"a tiny astronaut hatching from an egg on the moon",
|
57 |
+
"a cute white cat holding a sign that says hello world",
|
58 |
+
"an anime illustration of Steve Jobs",
|
59 |
+
"Create image of Modern house in minecraft style",
|
60 |
+
"photo of a woman on the beach, shot from above. She is facing the sea, while wearing a white dress. She has long blonde hair",
|
61 |
+
"Selfie photo of a wizard with long beard and purple robes, he is apparently in the middle of Tokyo. Probably taken from a phone.",
|
62 |
+
"Photo of a young woman with long, wavy brown hair tied in a bun and glasses. She has a fair complexion and is wearing subtle makeup, emphasizing her eyes and lips. She is dressed in a black top. The background appears to be an urban setting with a building facade, and the sunlight casts a warm glow on her face.",
|
63 |
+
]
|
64 |
+
|
65 |
+
# --- Gradio UI ---
|
66 |
+
with gr.Blocks() as demo:
|
67 |
+
with gr.Column(elem_id="app-container"):
|
68 |
+
gr.Markdown("# π¨ Realtime FLUX Image Generator")
|
69 |
+
gr.Markdown("Generate stunning images in real-time with Modified Flux.Schnell pipeline.")
|
70 |
+
gr.Markdown("<span style='color: red;'>Note: Sometimes it stucks or stops generating images (I don't know why). In that situation just refresh the site.</span>")
|
71 |
+
|
72 |
+
with gr.Row():
|
73 |
+
with gr.Column(scale=2.5):
|
74 |
+
result = gr.Image(label="Generated Image", show_label=False, interactive=False)
|
75 |
+
with gr.Column(scale=1):
|
76 |
+
prompt = gr.Text(
|
77 |
+
label="Prompt",
|
78 |
+
placeholder="Describe the image you want to generate...",
|
79 |
+
lines=3,
|
80 |
+
show_label=False,
|
81 |
+
container=False,
|
82 |
+
)
|
83 |
+
generateBtn = gr.Button("πΌοΈ Generate Image")
|
84 |
+
enhanceBtn = gr.Button("π Enhance Image")
|
85 |
+
|
86 |
+
with gr.Column("Advanced Options"):
|
87 |
+
with gr.Row():
|
88 |
+
realtime = gr.Checkbox(label="Realtime Toggler", info="If TRUE then uses more GPU but create image in realtime.", value=False)
|
89 |
+
latency = gr.Text(label="Latency")
|
90 |
+
with gr.Row():
|
91 |
+
seed = gr.Number(label="Seed", value=42)
|
92 |
+
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
93 |
+
with gr.Row():
|
94 |
+
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_WIDTH)
|
95 |
+
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_HEIGHT)
|
96 |
+
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=30, step=1, value=DEFAULT_INFERENCE_STEPS)
|
97 |
+
|
98 |
+
with gr.Row():
|
99 |
+
gr.Markdown("### π Inspiration Gallery")
|
100 |
+
with gr.Row():
|
101 |
+
gr.Examples(
|
102 |
+
examples=examples,
|
103 |
+
fn=generate_image,
|
104 |
+
inputs=[prompt],
|
105 |
+
outputs=[result, seed, latency],
|
106 |
+
cache_examples="lazy"
|
107 |
+
)
|
108 |
+
|
109 |
+
enhanceBtn.click(
|
110 |
+
fn=generate_image,
|
111 |
+
inputs=[prompt, seed, width, height],
|
112 |
+
outputs=[result, seed, latency],
|
113 |
+
show_progress="full",
|
114 |
+
queue=False,
|
115 |
+
concurrency_limit=None
|
116 |
+
)
|
117 |
+
|
118 |
+
generateBtn.click(
|
119 |
+
fn=generate_image,
|
120 |
+
inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps],
|
121 |
+
outputs=[result, seed, latency],
|
122 |
+
show_progress="full",
|
123 |
+
api_name="RealtimeFlux",
|
124 |
+
queue=False
|
125 |
+
)
|
126 |
+
|
127 |
+
def update_ui(realtime_enabled):
|
128 |
+
return {
|
129 |
+
prompt: gr.update(interactive=True),
|
130 |
+
generateBtn: gr.update(visible=not realtime_enabled)
|
131 |
+
}
|
132 |
+
|
133 |
+
realtime.change(
|
134 |
+
fn=update_ui,
|
135 |
+
inputs=[realtime],
|
136 |
+
outputs=[prompt, generateBtn],
|
137 |
+
queue=False,
|
138 |
+
concurrency_limit=None
|
139 |
+
)
|
140 |
+
|
141 |
+
def realtime_generation(*args):
|
142 |
+
if args[0]: # If realtime is enabled
|
143 |
+
return next(generate_image(*args[1:]))
|
144 |
+
|
145 |
+
prompt.submit(
|
146 |
+
fn=generate_image,
|
147 |
+
inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps],
|
148 |
+
outputs=[result, seed, latency],
|
149 |
+
show_progress="full",
|
150 |
+
queue=False,
|
151 |
+
concurrency_limit=None
|
152 |
+
)
|
153 |
+
|
154 |
+
for component in [prompt, width, height, num_inference_steps]:
|
155 |
+
component.input(
|
156 |
+
fn=realtime_generation,
|
157 |
+
inputs=[realtime, prompt, seed, width, height, randomize_seed, num_inference_steps],
|
158 |
+
outputs=[result, seed, latency],
|
159 |
+
show_progress="hidden",
|
160 |
+
trigger_mode="always_last",
|
161 |
+
queue=False,
|
162 |
+
concurrency_limit=None
|
163 |
+
)
|
164 |
+
|
165 |
+
# Launch the app
|
166 |
+
demo.queue().launch(share=False, show_api=False, debug=False)
|