File size: 8,633 Bytes
506c93a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
from toolbox import get_conf, get_pictures_list, encode_image
import base64
import datetime
import hashlib
import hmac
import json
from urllib.parse import urlparse
import ssl
from datetime import datetime
from time import mktime
from urllib.parse import urlencode
from wsgiref.handlers import format_date_time
import websocket
import threading, time

timeout_bot_msg = '[Local Message] Request timeout. Network error.'

class Ws_Param(object):
    # 初始化
    def __init__(self, APPID, APIKey, APISecret, gpt_url):
        self.APPID = APPID
        self.APIKey = APIKey
        self.APISecret = APISecret
        self.host = urlparse(gpt_url).netloc
        self.path = urlparse(gpt_url).path
        self.gpt_url = gpt_url

    # 生成url
    def create_url(self):
        # 生成RFC1123格式的时间戳
        now = datetime.now()
        date = format_date_time(mktime(now.timetuple()))

        # 拼接字符串
        signature_origin = "host: " + self.host + "\n"
        signature_origin += "date: " + date + "\n"
        signature_origin += "GET " + self.path + " HTTP/1.1"

        # 进行hmac-sha256进行加密
        signature_sha = hmac.new(self.APISecret.encode('utf-8'), signature_origin.encode('utf-8'), digestmod=hashlib.sha256).digest()
        signature_sha_base64 = base64.b64encode(signature_sha).decode(encoding='utf-8')
        authorization_origin = f'api_key="{self.APIKey}", algorithm="hmac-sha256", headers="host date request-line", signature="{signature_sha_base64}"'
        authorization = base64.b64encode(authorization_origin.encode('utf-8')).decode(encoding='utf-8')

        # 将请求的鉴权参数组合为字典
        v = {
            "authorization": authorization,
            "date": date,
            "host": self.host
        }
        # 拼接鉴权参数,生成url
        url = self.gpt_url + '?' + urlencode(v)
        # 此处打印出建立连接时候的url,参考本demo的时候可取消上方打印的注释,比对相同参数时生成的url与自己代码生成的url是否一致
        return url



class SparkRequestInstance():
    def __init__(self):
        XFYUN_APPID, XFYUN_API_SECRET, XFYUN_API_KEY = get_conf('XFYUN_APPID', 'XFYUN_API_SECRET', 'XFYUN_API_KEY')
        if XFYUN_APPID == '00000000' or XFYUN_APPID == '': raise RuntimeError('请配置讯飞星火大模型的XFYUN_APPID, XFYUN_API_KEY, XFYUN_API_SECRET')
        self.appid = XFYUN_APPID
        self.api_secret = XFYUN_API_SECRET
        self.api_key = XFYUN_API_KEY
        self.gpt_url = "ws://spark-api.xf-yun.com/v1.1/chat"
        self.gpt_url_v2 = "ws://spark-api.xf-yun.com/v2.1/chat"
        self.gpt_url_v3 = "ws://spark-api.xf-yun.com/v3.1/chat"
        self.gpt_url_v35 = "wss://spark-api.xf-yun.com/v3.5/chat"
        self.gpt_url_img = "wss://spark-api.cn-huabei-1.xf-yun.com/v2.1/image"

        self.time_to_yield_event = threading.Event()
        self.time_to_exit_event = threading.Event()

        self.result_buf = ""

    def generate(self, inputs, llm_kwargs, history, system_prompt, use_image_api=False):
        llm_kwargs = llm_kwargs
        history = history
        system_prompt = system_prompt
        import _thread as thread
        thread.start_new_thread(self.create_blocking_request, (inputs, llm_kwargs, history, system_prompt, use_image_api))
        while True:
            self.time_to_yield_event.wait(timeout=1)
            if self.time_to_yield_event.is_set():
                yield self.result_buf
            if self.time_to_exit_event.is_set():
                return self.result_buf


    def create_blocking_request(self, inputs, llm_kwargs, history, system_prompt, use_image_api):
        if llm_kwargs['llm_model'] == 'sparkv2':
            gpt_url = self.gpt_url_v2
        elif llm_kwargs['llm_model'] == 'sparkv3':
            gpt_url = self.gpt_url_v3
        elif llm_kwargs['llm_model'] == 'sparkv3.5':
            gpt_url = self.gpt_url_v35
        else:
            gpt_url = self.gpt_url
        file_manifest = []
        if use_image_api and llm_kwargs.get('most_recent_uploaded'):
            if llm_kwargs['most_recent_uploaded'].get('path'):
                file_manifest = get_pictures_list(llm_kwargs['most_recent_uploaded']['path'])
                if len(file_manifest) > 0:
                    print('正在使用讯飞图片理解API')
                    gpt_url = self.gpt_url_img
        wsParam = Ws_Param(self.appid, self.api_key, self.api_secret, gpt_url)
        websocket.enableTrace(False)
        wsUrl = wsParam.create_url()

        # 收到websocket连接建立的处理
        def on_open(ws):
            import _thread as thread
            thread.start_new_thread(run, (ws,))
        def run(ws, *args):
            data = json.dumps(gen_params(ws.appid, *ws.all_args, file_manifest))
            ws.send(data)

        # 收到websocket消息的处理
        def on_message(ws, message):
            data = json.loads(message)
            code = data['header']['code']
            if code != 0:
                print(f'请求错误: {code}, {data}')
                self.result_buf += str(data)
                ws.close()
                self.time_to_exit_event.set()
            else:
                choices = data["payload"]["choices"]
                status = choices["status"]
                content = choices["text"][0]["content"]
                ws.content += content
                self.result_buf += content
                if status == 2:
                    ws.close()
                    self.time_to_exit_event.set()
            self.time_to_yield_event.set()

        # 收到websocket错误的处理
        def on_error(ws, error):
            print("error:", error)
            self.time_to_exit_event.set()

        # 收到websocket关闭的处理
        def on_close(ws, *args):
            self.time_to_exit_event.set()

        # websocket
        ws = websocket.WebSocketApp(wsUrl, on_message=on_message, on_error=on_error, on_close=on_close, on_open=on_open)
        ws.appid = self.appid
        ws.content = ""
        ws.all_args = (inputs, llm_kwargs, history, system_prompt)
        ws.run_forever(sslopt={"cert_reqs": ssl.CERT_NONE})

def generate_message_payload(inputs, llm_kwargs, history, system_prompt, file_manifest):
    conversation_cnt = len(history) // 2
    messages = []
    if file_manifest:
        base64_images = []
        for image_path in file_manifest:
            base64_images.append(encode_image(image_path))
        for img_s in base64_images:
            if img_s not in str(messages):
                messages.append({"role": "user", "content": img_s, "content_type": "image"})
    else:
        messages = [{"role": "system", "content": system_prompt}]
    if conversation_cnt:
        for index in range(0, 2*conversation_cnt, 2):
            what_i_have_asked = {}
            what_i_have_asked["role"] = "user"
            what_i_have_asked["content"] = history[index]
            what_gpt_answer = {}
            what_gpt_answer["role"] = "assistant"
            what_gpt_answer["content"] = history[index+1]
            if what_i_have_asked["content"] != "":
                if what_gpt_answer["content"] == "": continue
                if what_gpt_answer["content"] == timeout_bot_msg: continue
                messages.append(what_i_have_asked)
                messages.append(what_gpt_answer)
            else:
                messages[-1]['content'] = what_gpt_answer['content']
    what_i_ask_now = {}
    what_i_ask_now["role"] = "user"
    what_i_ask_now["content"] = inputs
    messages.append(what_i_ask_now)
    return messages


def gen_params(appid, inputs, llm_kwargs, history, system_prompt, file_manifest):
    """
    通过appid和用户的提问来生成请参数
    """
    domains = {
        "spark": "general",
        "sparkv2": "generalv2",
        "sparkv3": "generalv3",
        "sparkv3.5": "generalv3.5",
    }
    domains_select = domains[llm_kwargs['llm_model']]
    if file_manifest: domains_select = 'image'
    data = {
        "header": {
            "app_id": appid,
            "uid": "1234"
        },
        "parameter": {
            "chat": {
                "domain": domains_select,
                "temperature": llm_kwargs["temperature"],
                "random_threshold": 0.5,
                "max_tokens": 4096,
                "auditing": "default"
            }
        },
        "payload": {
            "message": {
                "text": generate_message_payload(inputs, llm_kwargs, history, system_prompt, file_manifest)
            }
        }
    }
    return data