Spaces:
Sleeping
Sleeping
File size: 18,316 Bytes
c145d80 b43e4df 4c49fde b43e4df c145d80 b43e4df c145d80 082969f c145d80 b43e4df 9f8e402 b43e4df 9f8e402 b43e4df a9e98de b43e4df c145d80 594d078 c145d80 082969f c145d80 b43e4df c145d80 082969f c145d80 082969f c145d80 082969f c145d80 082969f 594d078 082969f c145d80 082969f c145d80 082969f c145d80 082969f c145d80 b43e4df 4c49fde 082969f b43e4df 9f8e402 b43e4df 9f8e402 b43e4df 9f8e402 b43e4df c145d80 082969f c145d80 082969f c145d80 082969f c145d80 082969f c145d80 082969f 594d078 082969f c145d80 082969f c145d80 082969f c145d80 082969f c145d80 082969f c145d80 082969f c145d80 082969f c145d80 082969f c145d80 082969f c145d80 082969f c145d80 082969f c145d80 082969f c145d80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
import streamlit as st
import plotly.express as px
import pandas as pd
import streamlit_authenticator as stauth
import yaml
from yaml.loader import SafeLoader
import plotly.graph_objects as go
from transformers import pipeline
from PIL import Image, ImageDraw
from backend import *
# Start of Streamlit App
st.set_page_config(layout="centered")
hide_streamlit_style = '''
<style>
#MainMenu {visibility: show;}
footer {visibility: hidden;}
</style>
'''
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
@st.cache_resource
# Function to initialise object_detection model
def initialise_object_detection_model():
checkpoint = "google/owlvit-base-patch32"
detector = pipeline(model=checkpoint, task="zero-shot-object-detection")
return detector
# Function to get result from object detection
def get_object_detection_results(detector, image_path, object_labels):
image = Image.open(image_path)
predictions = detector(
image,
candidate_labels=object_labels,
)
draw = ImageDraw.Draw(image)
for prediction in predictions:
box = prediction["box"]
label = prediction["label"]
score = prediction["score"]
xmin, ymin, xmax, ymax = box.values()
draw.rectangle((xmin, ymin, xmax, ymax), outline="red", width=1)
draw.text((xmin, ymin), f"{label}: {round(score,2)}", fill="white")
return image
detector = initialise_object_detection_model()
# Import configuration file for user authentication
with open('credentials.yaml') as file:
config = yaml.load(file, Loader=SafeLoader)
# Create an authentication object.
authenticator = stauth.Authenticate(
config['credentials'],
config['cookie']['name'],
config['cookie']['key'],
config['cookie']['expiry_days']
)
# List of advanced users
advanced_users = ['advanced']
# Landing page if user not logged in
if st.session_state['authentication_status'] is None:
# Landing page copy and banner
st.markdown('<h1 style="text-align: left;">Fly Situation Monitoring App 🪰</h1>', unsafe_allow_html=True)
st.markdown('<h4 style="text-align: left;">Keeping You Informed, Keeping Flies at Bay</h4>', unsafe_allow_html=True)
st.write('\n')
st.write('\n')
# Loging log-in details
name, authentication_status, username = authenticator.login('', 'main')
# If log-in failed
if st.session_state['authentication_status'] is False:
st.error('Username/password is incorrect.')
st.write('\n')
st.write('\n')
# App if user is logged in and authenticated
if st.session_state['authentication_status']:
# Streamlit app start
st.title("Fly Situation Monitoring App 🪰")
st.markdown("Keeping You Informed, Keeping Flies at Bay")
st.write('\n')
# User selects a canteen
canteen = st.selectbox("Select a Canteen:", options=["Deck", "Frontier"])
st.write('\n')
# If user is a student, show basic app layout
if not st.session_state['username'] in advanced_users:
# Tabs
tab1, tab2, tab3 = st.tabs(["Current", "History", "FAQ"])
# Tab 1: Fly Situation
with tab1:
st.header("Current Fly Situation")
# Get data
fly_situation, delta1, delta2, delta3 = get_fly_situation(canteen)
# Display key information using cards
col1_fly_curr, col2_fly_curr, col3_fly_curr = st.columns(3)
col1_fly_curr.metric("Temperature", str(fly_situation["temperature"]) + " °C", delta=delta1)
col2_fly_curr.metric("Humidty", str(fly_situation["humidity"]) + " %", delta=delta2)
col3_fly_curr.metric("Fly Count", str(fly_situation["fly_count"]), delta=delta3, delta_color="inverse")
st.caption("Last updated at " + fly_situation["last_updated"] + " (5 min intervals)")
# Alert level
if fly_situation["fly_count"] > 20:
alert_level = "High 🔴"
alert_colour = "red"
elif fly_situation["fly_count"] > 10:
alert_level = "Moderate 🟠"
alert_colour = "orange"
else:
alert_level = "Low 🟢"
alert_colour = "green"
st.markdown(f"<h2 style='color:{alert_colour}; text-align: left'>Alert Level: {alert_level}</h3>", unsafe_allow_html=True)
st.markdown('---')
# Camera locations
st.header("Smart Sensor Locations")
camera_locations = get_camera_locations(canteen)
st.map(camera_locations, size='size', zoom=18)
st.markdown('---')
# Feedback
st.header("Feedback")
# Gather feedback
feedback_col1, feedback_col2 = st.columns(2)
with feedback_col1:
user_feedback = st.text_area("Provide Feedback on the Fly Situation:")
with feedback_col2:
uploaded_files = st.file_uploader("Upload a Photo", accept_multiple_files=True, type=['jpg', 'png'])
for uploaded_file in uploaded_files:
st.image(uploaded_file)
if st.button("Submit Feedback"):
st.success("Feedback submitted successfully!")
st.write('\n')
st.write('\n')
st.write('\n')
# Tab 2: History
with tab2:
st.subheader("Fly Count Over Time")
# Get history data
fly_situation_history = get_fly_situation_history(canteen)
# Create a DataFrame for the time series data
df = pd.DataFrame(fly_situation_history)
sum_by_timestamp = df.groupby('timestamp')['fly_count'].sum().reset_index()
sum_by_timestamp["timestamp"] = pd.to_datetime(sum_by_timestamp["timestamp"])
# Plot the time series using Plotly Express
fig = px.line(sum_by_timestamp, x="timestamp", y="fly_count", labels={"fly_count": "Fly Count", "timestamp": "Timestamp"})
st.plotly_chart(fig)
# Question-and-Answer
with st.form("form"):
prompt = st.text_input("Ask a Question:")
submit = st.form_submit_button("Submit")
if prompt:
pass
#with st.spinner("Generating..."):
# Tab 3: FAQ
with tab3:
st.header("Frequently Asked Questions")
with st.expander("What is this app about?"):
st.write("This app provides you real-time information on fly activity by the smart fly monitoring system.")
with st.expander("How do the sensors work/detect fly activity?"):
st.write("The sensors built into the fly traps leverages cutting-edge AI methodologies for advanced fly detection.")
st.write("1) Object Detection - Using OWL-ViT, an open-vocabulary object detector, we can finetune the model specifically to recognise flies.")
st.write('\n')
st.write('\n')
st.write("Try OWL-ViT:")
object_labels = st.text_input("Enter your labels for the model to detect (comma-separated)", value="insect")
labels = object_labels.split(", ")
image_file = st.file_uploader("Upload an image", type=["jpg", "png"])
demo_image = st.checkbox("Load in demo image")
if image_file:
st.write('Before:')
st.image(image_file)
if image_file and object_labels:
st.write('After:')
with st.spinner("Detecting"):
st.image(image = get_object_detection_results(detector, image_file, labels))
if demo_image:
st.write('Before:')
st.image("images/fly.jpg")
if demo_image and object_labels:
st.write('After:')
with st.spinner("Detecting"):
st.image(image = get_object_detection_results(detector, "images/fly.jpg", labels))
st.write('\n')
st.write('\n')
st.write("2) Behaviour Analysis - By comparing consecutive frames, the system can extract data such as the trajectory, speed, and direction of each fly's movement. Training the system on these data can improve the system's detection of flies.")
trajectory_data = pd.DataFrame({
'X': [1, 2, 3, 4, 5],
'Y': [10, 25, 20, 25, 30],
'Timestamp': pd.date_range('2023-01-01', '2023-01-05', freq='D')
})
# Create a Plotly figure
fig = go.Figure()
# Add a trace for the trajectory
fig.add_trace(go.Scatter(x=trajectory_data['X'], y=trajectory_data['Y'], mode='lines'))
# Update layout
fig.update_layout(
xaxis_title='X-Coordinate',
yaxis_title='Y-Coordinate',
title='Example of a Fly Trajectory'
)
# Display the Plotly figure
st.plotly_chart(fig, use_container_width=True)
st.write('\n')
st.write('\n')
st.write('3) Training Augmentation - The fly detection system employs generative adversial networks, which generates synthetic fly images for training the fly detection model. This makes the system more robust at detecting flies in all scenarios.')
with st.expander("How accurate is the fly detection in the system?"):
st.write("The system is still in experimental phase.")
with st.expander("How often is the data updated or refreshed in real-time?"):
st.write("5 minute intervals.")
with st.expander("Why do I hear some sounds coming out from the fly traps?"):
st.write("The fly traps are built to emit accoustic sounds to attract flies.")
with st.expander("The traps seem to release some gas. What is that?"):
st.write("The fly traps release non-toxic pheremones that attract flies.")
# Logout
logout_col1, logout_col2 = st.columns([6,1])
with logout_col2:
st.write('\n')
st.write('\n')
st.write('\n')
authenticator.logout('Logout', 'main')
# Footer Credits
st.markdown('##')
st.markdown("---")
st.markdown("Created with ❤️ by HS2912 W4 Group 2")
else:
# Tabs
tab1, tab2, tab3 = st.tabs(["Current", "History", "Control System"])
# Tab 1: Fly Situation
with tab1:
st.header("Current Fly Situation")
# Get current data
fly_situation, delta1, delta2, delta3 = get_fly_situation(canteen)
# Display key information using cards
col1_fly_curr, col2_fly_curr, col3_fly_curr = st.columns(3)
col1_fly_curr.metric("Temperature", str(fly_situation["temperature"]) + " °C", delta=delta1)
col2_fly_curr.metric("Humidty", str(fly_situation["humidity"]) + " %", delta=delta2)
col3_fly_curr.metric("Fly Count", str(fly_situation["fly_count"]), delta=delta3, delta_color="inverse")
st.caption("Last updated at " + fly_situation["last_updated"] + " (5 min intervals)")
# Alert
if fly_situation["fly_count"] > 20:
alert_level = "High 🔴"
alert_colour = "red"
elif fly_situation["fly_count"] > 10:
alert_level = "Moderate 🟠"
alert_colour = "orange"
else:
alert_level = "Low 🟢"
alert_colour = "green"
st.markdown(f"<h2 style='color:{alert_colour}; text-align: left'>Alert Level: {alert_level}</h3>", unsafe_allow_html=True)
st.markdown('---')
# Camera locations
st.header("Smart Sensor Locations")
camera_locations = get_camera_locations(canteen)
st.map(camera_locations, size='size', zoom=18)
st.markdown('---')
# Feedback
st.header("Feedback")
# Gather feedback
feedback_col1, feedback_col2 = st.columns(2)
with feedback_col1:
user_feedback = st.text_area("Provide Feedback on the Fly Situation:")
with feedback_col2:
uploaded_files = st.file_uploader("Upload a Photo", accept_multiple_files=True, type=['jpg', 'png'])
for uploaded_file in uploaded_files:
st.image(uploaded_file)
if st.button("Submit Feedback"):
st.success("Feedback submitted successfully!")
st.write('\n')
st.write('\n')
st.write('\n')
# Tab 2: History
with tab2:
# Fly count over time
st.subheader("Fly Count Over Time")
# Select sensor
selected_sensor = st.selectbox("Select Sensor:", ["All", "Sensor 1", "Sensor 2", "Sensor 3"])
# Get history data
fly_situation_history = get_fly_situation_history(canteen)
# Create a DataFrame for the time series data
df = pd.DataFrame(fly_situation_history)
if selected_sensor != "All":
df = df[df["sensor"]==int(selected_sensor[-1])]
sum_by_timestamp = df.groupby('timestamp')['fly_count'].sum().reset_index()
sum_by_timestamp["timestamp"] = pd.to_datetime(sum_by_timestamp["timestamp"])
# Plot the time series using Plotly Express
fig = px.line(sum_by_timestamp, x="timestamp", y="fly_count", labels={"fly_count": "Fly Count", "timestamp": "Timestamp"})
st.plotly_chart(fig)
# Pheremones level
st.subheader("Pheremone Level Over Time")
selected_sensor_level = st.selectbox("Select Sensor:", ["Sensor 1", "Sensor 2", "Sensor 3"])
# Get history data
sensor_pheremone_history = get_pheremone_levels(selected_sensor_level)
pheremone_df = pd.DataFrame(sensor_pheremone_history)
pheremone_df = pheremone_df[pheremone_df["sensor"] == int(selected_sensor_level[-1])]
pheremone_df['timestamp'] = pd.to_datetime(pheremone_df['timestamp'])
# Plot the time series using Plotly Express
fig = px.line(pheremone_df, x="timestamp", y="pheremone_level", labels={"pheremone_level": "Pheremone Level", "timestamp": "Timestamp"})
st.plotly_chart(fig)
# Question-and-Answer
with st.form("form"):
prompt = st.text_input("Ask a Question:")
submit = st.form_submit_button("Submit")
if prompt:
with st.spinner("Generating..."):
pass
# Tab 3: Control System
with tab3:
# Enable/disable automatic pest control system
st.header("System Settings")
automatic_control_enabled = st.toggle("Enable Automatic Pest Control", value=True)
st.write('\n')
st.write('\n')
if not automatic_control_enabled:
disabled = False
else:
disabled = True
# Camera
st.subheader("Smart Camera/Sensors")
sensor1 = st.toggle("Enable Sensor 1", value=True, disabled=disabled, key='deck_sensor_1')
sensor2 = st.toggle("Enable Sensor 2", value=True, disabled=disabled, key='deck_sensor_2')
sensor3 = st.toggle("Enable Sensor 3", value=True, disabled=disabled, key='deck_sensor_3')
st.write('\n')
# Audio
st.subheader("Audio")
# Accoustic
accoustic = st.selectbox("Accoustic Audio", ["Audio 1", "Audio 2", "Audio 3"], disabled=disabled)
st.write('\n')
# Pheremones
# Time interval for pheremones discharge in minutes)
st.subheader("Pheremones")
pheremones_interval = st.slider("Pheremones Discharge Interval (minutes)", min_value=5, max_value=60, value=15, step=5, disabled=disabled)
st.write('\n')
# Alerts
st.subheader('Alerts')
# Pest activity threshold for alerts
pest_activity_threshold = st.slider("Fly Count Threshold to Send Out Alerts", min_value=0, max_value=100, value=30, step=5, disabled=disabled)
st.write('\n')
# Instant alerts for pest sightings or unusual activity
st.markdown('<h5>Instant alert</h3>', unsafe_allow_html=True)
if st.button("Send Pest Alert", disabled=disabled):
st.success("Pest alert sent!")
st.write('\n')
# Notifications for upcoming preventive measures or scheduled treatments
st.markdown('<h5>Schedule notification for upcoming treatment day</h3>', unsafe_allow_html=True)
upcoming_event_date = st.date_input("Schedule Date", disabled=disabled)
upcoming_event_time = st.time_input("Set time for alert", disabled=disabled)
if st.button("Schedule Notification", disabled=disabled):
st.success(f"Notification scheduled for {upcoming_event_date} {upcoming_event_time}")
# Logout
logout_col1, logout_col2 = st.columns([6,1])
with logout_col2:
st.write('\n')
st.write('\n')
st.write('\n')
authenticator.logout('Logout', 'main')
# Footer Credits
st.markdown('##')
st.markdown("---")
st.markdown("Created with ❤️ by HS2912 W4 Group 2")
|