import streamlit as st import plotly.express as px import pandas as pd import streamlit_authenticator as stauth import yaml from yaml.loader import SafeLoader import plotly.graph_objects as go from transformers import pipeline from PIL import Image, ImageDraw from backend import * # Start of Streamlit App st.set_page_config(layout="centered") hide_streamlit_style = ''' ''' st.markdown(hide_streamlit_style, unsafe_allow_html=True) @st.cache_resource # Function to initialise object_detection model def initialise_object_detection_model(): checkpoint = "google/owlvit-base-patch32" detector = pipeline(model=checkpoint, task="zero-shot-object-detection") return detector # Function to get result from object detection def get_object_detection_results(detector, image_path, object_labels): image = Image.open(image_path) predictions = detector( image, candidate_labels=object_labels, ) draw = ImageDraw.Draw(image) for prediction in predictions: box = prediction["box"] label = prediction["label"] score = prediction["score"] xmin, ymin, xmax, ymax = box.values() draw.rectangle((xmin, ymin, xmax, ymax), outline="red", width=1) draw.text((xmin, ymin), f"{label}: {round(score,2)}", fill="white") return image detector = initialise_object_detection_model() # Import configuration file for user authentication with open('credentials.yaml') as file: config = yaml.load(file, Loader=SafeLoader) # Create an authentication object. authenticator = stauth.Authenticate( config['credentials'], config['cookie']['name'], config['cookie']['key'], config['cookie']['expiry_days'] ) # List of advanced users advanced_users = ['advanced'] # Landing page if user not logged in if st.session_state['authentication_status'] is None: # Landing page copy and banner st.markdown('

Fly Situation Monitoring App 🪰

', unsafe_allow_html=True) st.markdown('

Keeping You Informed, Keeping Flies at Bay

', unsafe_allow_html=True) st.write('\n') st.write('\n') # Loging log-in details name, authentication_status, username = authenticator.login('', 'main') # If log-in failed if st.session_state['authentication_status'] is False: st.error('Username/password is incorrect.') st.write('\n') st.write('\n') # App if user is logged in and authenticated if st.session_state['authentication_status']: # Streamlit app start st.title("Fly Situation Monitoring App 🪰") st.markdown("Keeping You Informed, Keeping Flies at Bay") st.write('\n') # User selects a canteen canteen = st.selectbox("Select a Canteen:", options=["Deck", "Frontier"]) st.write('\n') # If user is a student, show basic app layout if not st.session_state['username'] in advanced_users: # Tabs tab1, tab2, tab3 = st.tabs(["Current", "History", "FAQ"]) # Tab 1: Fly Situation with tab1: st.header("Current Fly Situation") # Get data fly_situation, delta1, delta2, delta3 = get_fly_situation(canteen) # Display key information using cards col1_fly_curr, col2_fly_curr, col3_fly_curr = st.columns(3) col1_fly_curr.metric("Temperature", str(fly_situation["temperature"]) + " °C", delta=delta1) col2_fly_curr.metric("Humidty", str(fly_situation["humidity"]) + " %", delta=delta2) col3_fly_curr.metric("Fly Count", str(fly_situation["fly_count"]), delta=delta3, delta_color="inverse") st.caption("Last updated at " + fly_situation["last_updated"] + " (5 min intervals)") # Alert level if fly_situation["fly_count"] > 20: alert_level = "High 🔴" alert_colour = "red" elif fly_situation["fly_count"] > 10: alert_level = "Moderate 🟠" alert_colour = "orange" else: alert_level = "Low 🟢" alert_colour = "green" st.markdown(f"

Alert Level: {alert_level}

", unsafe_allow_html=True) st.markdown('---') # Camera locations st.header("Smart Sensor Locations") camera_locations = get_camera_locations(canteen) st.map(camera_locations, size='size', zoom=18) st.markdown('---') # Feedback st.header("Feedback") # Gather feedback feedback_col1, feedback_col2 = st.columns(2) with feedback_col1: user_feedback = st.text_area("Provide Feedback on the Fly Situation:") with feedback_col2: uploaded_files = st.file_uploader("Upload a Photo", accept_multiple_files=True, type=['jpg', 'png']) for uploaded_file in uploaded_files: st.image(uploaded_file) if st.button("Submit Feedback"): st.success("Feedback submitted successfully!") st.write('\n') st.write('\n') st.write('\n') # Tab 2: History with tab2: st.subheader("Fly Count Over Time") # Get history data fly_situation_history = get_fly_situation_history(canteen) # Create a DataFrame for the time series data df = pd.DataFrame(fly_situation_history) sum_by_timestamp = df.groupby('timestamp')['fly_count'].sum().reset_index() sum_by_timestamp["timestamp"] = pd.to_datetime(sum_by_timestamp["timestamp"]) # Plot the time series using Plotly Express fig = px.line(sum_by_timestamp, x="timestamp", y="fly_count", labels={"fly_count": "Fly Count", "timestamp": "Timestamp"}) st.plotly_chart(fig) # Question-and-Answer with st.form("form"): prompt = st.text_input("Ask a Question:") submit = st.form_submit_button("Submit") if prompt: pass #with st.spinner("Generating..."): # Tab 3: FAQ with tab3: st.header("Frequently Asked Questions") with st.expander("What is this app about?"): st.write("This app provides you real-time information on fly activity by the smart fly monitoring system.") with st.expander("How do the sensors work/detect fly activity?"): st.write("The sensors built into the fly traps leverages cutting-edge AI methodologies for advanced fly detection.") st.write("1) Object Detection - Using OWL-ViT, an open-vocabulary object detector, we can finetune the model specifically to recognise flies.") st.write('\n') st.write('\n') st.write("Try OWL-ViT:") object_labels = st.text_input("Enter your labels for the model to detect (comma-separated)", value="insect") labels = object_labels.split(", ") image_file = st.file_uploader("Upload an image", type=["jpg", "png"]) demo_image = st.checkbox("Load in demo image") if image_file: st.write('Before:') st.image(image_file) if image_file and object_labels: st.write('After:') with st.spinner("Detecting"): st.image(image = get_object_detection_results(detector, image_file, labels)) if demo_image: st.write('Before:') st.image("images/fly.jpg") if demo_image and object_labels: st.write('After:') with st.spinner("Detecting"): st.image(image = get_object_detection_results(detector, "images/fly.jpg", labels)) st.write('\n') st.write('\n') st.write("2) Behaviour Analysis - By comparing consecutive frames, the system can extract data such as the trajectory, speed, and direction of each fly's movement. Training the system on these data can improve the system's detection of flies.") trajectory_data = pd.DataFrame({ 'X': [1, 2, 3, 4, 5], 'Y': [10, 25, 20, 25, 30], 'Timestamp': pd.date_range('2023-01-01', '2023-01-05', freq='D') }) # Create a Plotly figure fig = go.Figure() # Add a trace for the trajectory fig.add_trace(go.Scatter(x=trajectory_data['X'], y=trajectory_data['Y'], mode='lines')) # Update layout fig.update_layout( xaxis_title='X-Coordinate', yaxis_title='Y-Coordinate', title='Example of a Fly Trajectory' ) # Display the Plotly figure st.plotly_chart(fig, use_container_width=True) st.write('\n') st.write('\n') st.write('3) Training Augmentation - The fly detection system employs generative adversial networks, which generates synthetic fly images for training the fly detection model. This makes the system more robust at detecting flies in all scenarios.') with st.expander("How accurate is the fly detection in the system?"): st.write("The system is still in experimental phase.") with st.expander("How often is the data updated or refreshed in real-time?"): st.write("5 minute intervals.") with st.expander("Why do I hear some sounds coming out from the fly traps?"): st.write("The fly traps are built to emit accoustic sounds to attract flies.") with st.expander("The traps seem to release some gas. What is that?"): st.write("The fly traps release non-toxic pheremones that attract flies.") # Logout logout_col1, logout_col2 = st.columns([6,1]) with logout_col2: st.write('\n') st.write('\n') st.write('\n') authenticator.logout('Logout', 'main') # Footer Credits st.markdown('##') st.markdown("---") st.markdown("Created with ❤️ by HS2912 W4 Group 2") else: # Tabs tab1, tab2, tab3 = st.tabs(["Current", "History", "Control System"]) # Tab 1: Fly Situation with tab1: st.header("Current Fly Situation") # Get current data fly_situation, delta1, delta2, delta3 = get_fly_situation(canteen) # Display key information using cards col1_fly_curr, col2_fly_curr, col3_fly_curr = st.columns(3) col1_fly_curr.metric("Temperature", str(fly_situation["temperature"]) + " °C", delta=delta1) col2_fly_curr.metric("Humidty", str(fly_situation["humidity"]) + " %", delta=delta2) col3_fly_curr.metric("Fly Count", str(fly_situation["fly_count"]), delta=delta3, delta_color="inverse") st.caption("Last updated at " + fly_situation["last_updated"] + " (5 min intervals)") # Alert if fly_situation["fly_count"] > 20: alert_level = "High 🔴" alert_colour = "red" elif fly_situation["fly_count"] > 10: alert_level = "Moderate 🟠" alert_colour = "orange" else: alert_level = "Low 🟢" alert_colour = "green" st.markdown(f"

Alert Level: {alert_level}

", unsafe_allow_html=True) st.markdown('---') # Camera locations st.header("Smart Sensor Locations") camera_locations = get_camera_locations(canteen) st.map(camera_locations, size='size', zoom=18) st.markdown('---') # Feedback st.header("Feedback") # Gather feedback feedback_col1, feedback_col2 = st.columns(2) with feedback_col1: user_feedback = st.text_area("Provide Feedback on the Fly Situation:") with feedback_col2: uploaded_files = st.file_uploader("Upload a Photo", accept_multiple_files=True, type=['jpg', 'png']) for uploaded_file in uploaded_files: st.image(uploaded_file) if st.button("Submit Feedback"): st.success("Feedback submitted successfully!") st.write('\n') st.write('\n') st.write('\n') # Tab 2: History with tab2: # Fly count over time st.subheader("Fly Count Over Time") # Select sensor selected_sensor = st.selectbox("Select Sensor:", ["All", "Sensor 1", "Sensor 2", "Sensor 3"]) # Get history data fly_situation_history = get_fly_situation_history(canteen) # Create a DataFrame for the time series data df = pd.DataFrame(fly_situation_history) if selected_sensor != "All": df = df[df["sensor"]==int(selected_sensor[-1])] sum_by_timestamp = df.groupby('timestamp')['fly_count'].sum().reset_index() sum_by_timestamp["timestamp"] = pd.to_datetime(sum_by_timestamp["timestamp"]) # Plot the time series using Plotly Express fig = px.line(sum_by_timestamp, x="timestamp", y="fly_count", labels={"fly_count": "Fly Count", "timestamp": "Timestamp"}) st.plotly_chart(fig) # Pheremones level st.subheader("Pheremone Level Over Time") selected_sensor_level = st.selectbox("Select Sensor:", ["Sensor 1", "Sensor 2", "Sensor 3"]) # Get history data sensor_pheremone_history = get_pheremone_levels(selected_sensor_level) pheremone_df = pd.DataFrame(sensor_pheremone_history) pheremone_df = pheremone_df[pheremone_df["sensor"] == int(selected_sensor_level[-1])] pheremone_df['timestamp'] = pd.to_datetime(pheremone_df['timestamp']) # Plot the time series using Plotly Express fig = px.line(pheremone_df, x="timestamp", y="pheremone_level", labels={"pheremone_level": "Pheremone Level", "timestamp": "Timestamp"}) st.plotly_chart(fig) # Question-and-Answer with st.form("form"): prompt = st.text_input("Ask a Question:") submit = st.form_submit_button("Submit") if prompt: with st.spinner("Generating..."): pass # Tab 3: Control System with tab3: # Enable/disable automatic pest control system st.header("System Settings") automatic_control_enabled = st.toggle("Enable Automatic Pest Control", value=True) st.write('\n') st.write('\n') if not automatic_control_enabled: disabled = False else: disabled = True # Camera st.subheader("Smart Camera/Sensors") sensor1 = st.toggle("Enable Sensor 1", value=True, disabled=disabled, key='deck_sensor_1') sensor2 = st.toggle("Enable Sensor 2", value=True, disabled=disabled, key='deck_sensor_2') sensor3 = st.toggle("Enable Sensor 3", value=True, disabled=disabled, key='deck_sensor_3') st.write('\n') # Audio st.subheader("Audio") # Accoustic accoustic = st.selectbox("Accoustic Audio", ["Audio 1", "Audio 2", "Audio 3"], disabled=disabled) st.write('\n') # Pheremones # Time interval for pheremones discharge in minutes) st.subheader("Pheremones") pheremones_interval = st.slider("Pheremones Discharge Interval (minutes)", min_value=5, max_value=60, value=15, step=5, disabled=disabled) st.write('\n') # Alerts st.subheader('Alerts') # Pest activity threshold for alerts pest_activity_threshold = st.slider("Fly Count Threshold to Send Out Alerts", min_value=0, max_value=100, value=30, step=5, disabled=disabled) st.write('\n') # Instant alerts for pest sightings or unusual activity st.markdown('
Instant alert
', unsafe_allow_html=True) if st.button("Send Pest Alert", disabled=disabled): st.success("Pest alert sent!") st.write('\n') # Notifications for upcoming preventive measures or scheduled treatments st.markdown('
Schedule notification for upcoming treatment day
', unsafe_allow_html=True) upcoming_event_date = st.date_input("Schedule Date", disabled=disabled) upcoming_event_time = st.time_input("Set time for alert", disabled=disabled) if st.button("Schedule Notification", disabled=disabled): st.success(f"Notification scheduled for {upcoming_event_date} {upcoming_event_time}") # Logout logout_col1, logout_col2 = st.columns([6,1]) with logout_col2: st.write('\n') st.write('\n') st.write('\n') authenticator.logout('Logout', 'main') # Footer Credits st.markdown('##') st.markdown("---") st.markdown("Created with ❤️ by HS2912 W4 Group 2")