Spaces:
Runtime error
Runtime error
File size: 4,287 Bytes
dcb96e9 3d1ea38 dcb96e9 3d1ea38 dcb96e9 3d1ea38 dcb96e9 3d1ea38 dcb96e9 3d1ea38 dcb96e9 3d1ea38 dcb96e9 3d1ea38 dcb96e9 3d1ea38 dcb96e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
"""Python Application Script for AI chatbot using LLAMA CPP."""
import logging
import gradio as gr
from llama_cpp import Llama
# Setting up enviornment
log_level = os.environ.get("LOG_LEVEL", "WARNING")
logging.basicConfig(encoding='utf-8', level=log_level)
# Default System Prompt
DEFAULT_SYSTEM_PROMPT = os.environ.get("DEFAULT_SYSTEM", "You are Dolphin, a helpful AI assistant.")
# Model Path
model_path = "model.gguf"
logging.debug("Model Path: %s", model_path)
logging.info("Loading Moddel")
llm = Llama(model_path=model_path, n_ctx=4000, n_threads=2, chat_format="chatml")
def generate(
message: str,
history: list[tuple[str, str]],
system_prompt: str,
temperature: float = 0.1,
max_tokens: int = 512,
top_p: float = 0.95,
repetition_penalty: float = 1.0,
):
"""Function to generate text.
:param message: The new user prompt.
:param history: The history of the chat session.
:param system: The system prompt of the model.
:param temperature: The temperature parameter for the model.
:param max_tokens: The maximum amount of tokens to use for the model.
:param top_p: The top p value for the model.
:param repetition_penalty: The repetition penalty for the model.
"""
logging.info("Generating Text")
logging.debug("message: %s", message)
logging.debug("history: %s", history)
logging.debug("system: %s", system)
logging.debug("temperature: %s", temperature)
logging.debug("max_tokens: %s", max_tokens)
logging.debug("top_p: %s", top_p)
logging.debug("repetion_penalty: %s", repetition_penalty)
# Formatting Prompt
logging.info("Formatting Prompt")
formatted_prompt = [{"role": "system", "content": system_prompt}]
for user_prompt, bot_response in history:
formatted_prompt.append({"role": "user", "content": user_prompt})
formatted_prompt.append({"role": "assistant", "content": bot_response})
formatted_prompt.append({"role": "user", "content": message})
logging.debug("Formatted Prompt: %s", formatted_prompt)
# Generating Response
logging.info("Generating Response")
stream_response = llm.create_chat_completion(
messages=formatted_prompt,
temperature=temperature,
max_tokens=max_tokens,
top_p=top_p,
repeat_penalty=repetition_penalty,
stream=True,
)
# Parsing Response
logging.info("Parsing Response")
response = ""
for chunk in stream_response:
if (
len(chunk["choices"][0]["delta"]) != 0
and "content" in chunk["choices"][0]["delta"]
):
response += chunk["choices"][0]["delta"]["content"]
logging.debug("Response: %s", response)
yield response
additional_inputs = [
gr.Textbox(
label="System Prompt",
max_lines=1,
interactive=True,
value=DEFAULT_SYSTEM_PROMPT,
),
gr.Slider(
label="Temperature",
value=0.9,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Max new tokens",
value=256,
minimum=0,
maximum=1048,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
]
examples = []
logging.info("Creating Chatbot")
mychatbot = gr.Chatbot(avatar_images=["user.png", "botsc.png"], bubble_full_width=False, show_label=False, show_copy_button=True, likeable=True,)
logging.info("Creating Chat Interface")
iface = gr.ChatInterface(
fn=generate,
chatbot=mychatbot,
additional_inputs=additional_inputs,
examples=examples,
concurrency_limit=20,
title="LLAMA CPP Template"
)
logging.info("Starting Application")
iface.launch(show_api=False, server_name="0.0.0.0") |