Spaces:
Sleeping
Sleeping
File size: 3,663 Bytes
fefc78b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
import os
import logging
from transformers import AutoTokenizer, AutoModelForCausalLM
import gradio as gr
log_level = os.environ.get("LOG_LEVEL", "WARNING")
logging.basicConfig(encoding='utf-8', level=log_level)
logging.info("Loading Model")
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", trust_remote_code=True)
def format_prompt(message, history):
"""Formats the prompt for the AI"""
logging.info("Formatting Prompt")
logging.debug("Input Message: %s", message)
logging.debug("Input History: %s", history)
prompt = f"Instruct: {message}\n"
prompt += "Output: "
return prompt
def generate(
prompt, history, system_prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
):
logging.info("Generating Response")
logging.debug("Input Prompt: %s", prompt)
logging.debug("Input History: %s", history)
logging.debug("Input System Prompt: %s", system_prompt)
logging.debug("Input Temperature: %s", temperature)
logging.debug("Input Max New Tokens: %s", max_new_tokens)
logging.debug("Input Top P: %s", top_p)
logging.debug("Input Repetition Penalty: %s", repetition_penalty)
logging.info("Converting Parameters to Correct Type")
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
logging.debug("Temperature: %s", temperature)
logging.debug("Top P: %s", top_p)
logging.info("Creating Generate kwargs")
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
logging.debug("Generate Args: %s", generate_kwargs)
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
logging.debug("Prompt: %s", formatted_prompt)
logging.info("Generating Text")
stream = model.generate(tokenizer(prompt, return_tensors="pt"), **generate_kwargs)
logging.info("Creating Output")
output = ""
for response in stream:
output += response.token.text
yield output
logging.debug("Output: %s", output)
return output
additional_inputs = [
gr.Textbox(
label="System Prompt",
max_lines=1,
interactive=True,
),
gr.Slider(
label="Temperature",
value=0.9,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Max new tokens",
value=256,
minimum=0,
maximum=1048,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
]
examples = []
logging.info("Creating Chat Interface")
gr.ChatInterface(
fn=generate,
chatbot=gr.Chatbot(show_label=False, show_share_button=False,
show_copy_button=True, likeable=True, layout="panel"),
additional_inputs=additional_inputs,
title="Mixtral Instruct",
examples=examples,
concurrency_limit=20,
).launch(show_api=False) |