edemana's picture
Upload folder using huggingface_hub
da0313f verified
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import click
import pickle
import re
import copy
import numpy as np
import torch
import dnnlib
from torch_utils import misc
#----------------------------------------------------------------------------
def load_network_pkl(f, force_fp16=False):
data = _LegacyUnpickler(f).load()
# Legacy TensorFlow pickle => convert.
if isinstance(data, tuple) and len(data) == 3 and all(isinstance(net, _TFNetworkStub) for net in data):
tf_G, tf_D, tf_Gs = data
G = convert_tf_generator(tf_G)
D = convert_tf_discriminator(tf_D)
G_ema = convert_tf_generator(tf_Gs)
data = dict(G=G, D=D, G_ema=G_ema)
# Add missing fields.
if 'training_set_kwargs' not in data:
data['training_set_kwargs'] = None
if 'augment_pipe' not in data:
data['augment_pipe'] = None
# Validate contents.
assert isinstance(data['G'], torch.nn.Module)
assert isinstance(data['D'], torch.nn.Module)
assert isinstance(data['G_ema'], torch.nn.Module)
assert isinstance(data['training_set_kwargs'], (dict, type(None)))
assert isinstance(data['augment_pipe'], (torch.nn.Module, type(None)))
# Force FP16.
if force_fp16:
for key in ['G', 'D', 'G_ema']:
old = data[key]
kwargs = copy.deepcopy(old.init_kwargs)
if key.startswith('G'):
kwargs.synthesis_kwargs = dnnlib.EasyDict(kwargs.get('synthesis_kwargs', {}))
kwargs.synthesis_kwargs.num_fp16_res = 4
kwargs.synthesis_kwargs.conv_clamp = 256
if key.startswith('D'):
kwargs.num_fp16_res = 4
kwargs.conv_clamp = 256
if kwargs != old.init_kwargs:
new = type(old)(**kwargs).eval().requires_grad_(False)
misc.copy_params_and_buffers(old, new, require_all=True)
data[key] = new
return data
#----------------------------------------------------------------------------
class _TFNetworkStub(dnnlib.EasyDict):
pass
class _LegacyUnpickler(pickle.Unpickler):
def find_class(self, module, name):
if module == 'dnnlib.tflib.network' and name == 'Network':
return _TFNetworkStub
return super().find_class(module, name)
#----------------------------------------------------------------------------
def _collect_tf_params(tf_net):
# pylint: disable=protected-access
tf_params = dict()
def recurse(prefix, tf_net):
for name, value in tf_net.variables:
tf_params[prefix + name] = value
for name, comp in tf_net.components.items():
recurse(prefix + name + '/', comp)
recurse('', tf_net)
return tf_params
#----------------------------------------------------------------------------
def _populate_module_params(module, *patterns):
for name, tensor in misc.named_params_and_buffers(module):
found = False
value = None
for pattern, value_fn in zip(patterns[0::2], patterns[1::2]):
match = re.fullmatch(pattern, name)
if match:
found = True
if value_fn is not None:
value = value_fn(*match.groups())
break
try:
assert found
if value is not None:
tensor.copy_(torch.from_numpy(np.array(value)))
except:
print(name, list(tensor.shape))
raise
#----------------------------------------------------------------------------
def convert_tf_generator(tf_G):
if tf_G.version < 4:
raise ValueError('TensorFlow pickle version too low')
# Collect kwargs.
tf_kwargs = tf_G.static_kwargs
known_kwargs = set()
def kwarg(tf_name, default=None, none=None):
known_kwargs.add(tf_name)
val = tf_kwargs.get(tf_name, default)
return val if val is not None else none
# Convert kwargs.
kwargs = dnnlib.EasyDict(
z_dim = kwarg('latent_size', 512),
c_dim = kwarg('label_size', 0),
w_dim = kwarg('dlatent_size', 512),
img_resolution = kwarg('resolution', 1024),
img_channels = kwarg('num_channels', 3),
mapping_kwargs = dnnlib.EasyDict(
num_layers = kwarg('mapping_layers', 8),
embed_features = kwarg('label_fmaps', None),
layer_features = kwarg('mapping_fmaps', None),
activation = kwarg('mapping_nonlinearity', 'lrelu'),
lr_multiplier = kwarg('mapping_lrmul', 0.01),
w_avg_beta = kwarg('w_avg_beta', 0.995, none=1),
),
synthesis_kwargs = dnnlib.EasyDict(
channel_base = kwarg('fmap_base', 16384) * 2,
channel_max = kwarg('fmap_max', 512),
num_fp16_res = kwarg('num_fp16_res', 0),
conv_clamp = kwarg('conv_clamp', None),
architecture = kwarg('architecture', 'skip'),
resample_filter = kwarg('resample_kernel', [1,3,3,1]),
use_noise = kwarg('use_noise', True),
activation = kwarg('nonlinearity', 'lrelu'),
),
)
# Check for unknown kwargs.
kwarg('truncation_psi')
kwarg('truncation_cutoff')
kwarg('style_mixing_prob')
kwarg('structure')
unknown_kwargs = list(set(tf_kwargs.keys()) - known_kwargs)
if len(unknown_kwargs) > 0:
raise ValueError('Unknown TensorFlow kwarg', unknown_kwargs[0])
# Collect params.
tf_params = _collect_tf_params(tf_G)
for name, value in list(tf_params.items()):
match = re.fullmatch(r'ToRGB_lod(\d+)/(.*)', name)
if match:
r = kwargs.img_resolution // (2 ** int(match.group(1)))
tf_params[f'{r}x{r}/ToRGB/{match.group(2)}'] = value
kwargs.synthesis.kwargs.architecture = 'orig'
#for name, value in tf_params.items(): print(f'{name:<50s}{list(value.shape)}')
# Convert params.
from training import networks
G = networks.Generator(**kwargs).eval().requires_grad_(False)
# pylint: disable=unnecessary-lambda
_populate_module_params(G,
r'mapping\.w_avg', lambda: tf_params[f'dlatent_avg'],
r'mapping\.embed\.weight', lambda: tf_params[f'mapping/LabelEmbed/weight'].transpose(),
r'mapping\.embed\.bias', lambda: tf_params[f'mapping/LabelEmbed/bias'],
r'mapping\.fc(\d+)\.weight', lambda i: tf_params[f'mapping/Dense{i}/weight'].transpose(),
r'mapping\.fc(\d+)\.bias', lambda i: tf_params[f'mapping/Dense{i}/bias'],
r'synthesis\.b4\.const', lambda: tf_params[f'synthesis/4x4/Const/const'][0],
r'synthesis\.b4\.conv1\.weight', lambda: tf_params[f'synthesis/4x4/Conv/weight'].transpose(3, 2, 0, 1),
r'synthesis\.b4\.conv1\.bias', lambda: tf_params[f'synthesis/4x4/Conv/bias'],
r'synthesis\.b4\.conv1\.noise_const', lambda: tf_params[f'synthesis/noise0'][0, 0],
r'synthesis\.b4\.conv1\.noise_strength', lambda: tf_params[f'synthesis/4x4/Conv/noise_strength'],
r'synthesis\.b4\.conv1\.affine\.weight', lambda: tf_params[f'synthesis/4x4/Conv/mod_weight'].transpose(),
r'synthesis\.b4\.conv1\.affine\.bias', lambda: tf_params[f'synthesis/4x4/Conv/mod_bias'] + 1,
r'synthesis\.b(\d+)\.conv0\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/Conv0_up/weight'][::-1, ::-1].transpose(3, 2, 0, 1),
r'synthesis\.b(\d+)\.conv0\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/Conv0_up/bias'],
r'synthesis\.b(\d+)\.conv0\.noise_const', lambda r: tf_params[f'synthesis/noise{int(np.log2(int(r)))*2-5}'][0, 0],
r'synthesis\.b(\d+)\.conv0\.noise_strength', lambda r: tf_params[f'synthesis/{r}x{r}/Conv0_up/noise_strength'],
r'synthesis\.b(\d+)\.conv0\.affine\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/Conv0_up/mod_weight'].transpose(),
r'synthesis\.b(\d+)\.conv0\.affine\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/Conv0_up/mod_bias'] + 1,
r'synthesis\.b(\d+)\.conv1\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/Conv1/weight'].transpose(3, 2, 0, 1),
r'synthesis\.b(\d+)\.conv1\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/Conv1/bias'],
r'synthesis\.b(\d+)\.conv1\.noise_const', lambda r: tf_params[f'synthesis/noise{int(np.log2(int(r)))*2-4}'][0, 0],
r'synthesis\.b(\d+)\.conv1\.noise_strength', lambda r: tf_params[f'synthesis/{r}x{r}/Conv1/noise_strength'],
r'synthesis\.b(\d+)\.conv1\.affine\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/Conv1/mod_weight'].transpose(),
r'synthesis\.b(\d+)\.conv1\.affine\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/Conv1/mod_bias'] + 1,
r'synthesis\.b(\d+)\.torgb\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/ToRGB/weight'].transpose(3, 2, 0, 1),
r'synthesis\.b(\d+)\.torgb\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/ToRGB/bias'],
r'synthesis\.b(\d+)\.torgb\.affine\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/ToRGB/mod_weight'].transpose(),
r'synthesis\.b(\d+)\.torgb\.affine\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/ToRGB/mod_bias'] + 1,
r'synthesis\.b(\d+)\.skip\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/Skip/weight'][::-1, ::-1].transpose(3, 2, 0, 1),
r'.*\.resample_filter', None,
)
return G
#----------------------------------------------------------------------------
def convert_tf_discriminator(tf_D):
if tf_D.version < 4:
raise ValueError('TensorFlow pickle version too low')
# Collect kwargs.
tf_kwargs = tf_D.static_kwargs
known_kwargs = set()
def kwarg(tf_name, default=None):
known_kwargs.add(tf_name)
return tf_kwargs.get(tf_name, default)
# Convert kwargs.
kwargs = dnnlib.EasyDict(
c_dim = kwarg('label_size', 0),
img_resolution = kwarg('resolution', 1024),
img_channels = kwarg('num_channels', 3),
architecture = kwarg('architecture', 'resnet'),
channel_base = kwarg('fmap_base', 16384) * 2,
channel_max = kwarg('fmap_max', 512),
num_fp16_res = kwarg('num_fp16_res', 0),
conv_clamp = kwarg('conv_clamp', None),
cmap_dim = kwarg('mapping_fmaps', None),
block_kwargs = dnnlib.EasyDict(
activation = kwarg('nonlinearity', 'lrelu'),
resample_filter = kwarg('resample_kernel', [1,3,3,1]),
freeze_layers = kwarg('freeze_layers', 0),
),
mapping_kwargs = dnnlib.EasyDict(
num_layers = kwarg('mapping_layers', 0),
embed_features = kwarg('mapping_fmaps', None),
layer_features = kwarg('mapping_fmaps', None),
activation = kwarg('nonlinearity', 'lrelu'),
lr_multiplier = kwarg('mapping_lrmul', 0.1),
),
epilogue_kwargs = dnnlib.EasyDict(
mbstd_group_size = kwarg('mbstd_group_size', None),
mbstd_num_channels = kwarg('mbstd_num_features', 1),
activation = kwarg('nonlinearity', 'lrelu'),
),
)
# Check for unknown kwargs.
kwarg('structure')
unknown_kwargs = list(set(tf_kwargs.keys()) - known_kwargs)
if len(unknown_kwargs) > 0:
raise ValueError('Unknown TensorFlow kwarg', unknown_kwargs[0])
# Collect params.
tf_params = _collect_tf_params(tf_D)
for name, value in list(tf_params.items()):
match = re.fullmatch(r'FromRGB_lod(\d+)/(.*)', name)
if match:
r = kwargs.img_resolution // (2 ** int(match.group(1)))
tf_params[f'{r}x{r}/FromRGB/{match.group(2)}'] = value
kwargs.architecture = 'orig'
#for name, value in tf_params.items(): print(f'{name:<50s}{list(value.shape)}')
# Convert params.
from training import networks
D = networks.Discriminator(**kwargs).eval().requires_grad_(False)
# pylint: disable=unnecessary-lambda
_populate_module_params(D,
r'b(\d+)\.fromrgb\.weight', lambda r: tf_params[f'{r}x{r}/FromRGB/weight'].transpose(3, 2, 0, 1),
r'b(\d+)\.fromrgb\.bias', lambda r: tf_params[f'{r}x{r}/FromRGB/bias'],
r'b(\d+)\.conv(\d+)\.weight', lambda r, i: tf_params[f'{r}x{r}/Conv{i}{["","_down"][int(i)]}/weight'].transpose(3, 2, 0, 1),
r'b(\d+)\.conv(\d+)\.bias', lambda r, i: tf_params[f'{r}x{r}/Conv{i}{["","_down"][int(i)]}/bias'],
r'b(\d+)\.skip\.weight', lambda r: tf_params[f'{r}x{r}/Skip/weight'].transpose(3, 2, 0, 1),
r'mapping\.embed\.weight', lambda: tf_params[f'LabelEmbed/weight'].transpose(),
r'mapping\.embed\.bias', lambda: tf_params[f'LabelEmbed/bias'],
r'mapping\.fc(\d+)\.weight', lambda i: tf_params[f'Mapping{i}/weight'].transpose(),
r'mapping\.fc(\d+)\.bias', lambda i: tf_params[f'Mapping{i}/bias'],
r'b4\.conv\.weight', lambda: tf_params[f'4x4/Conv/weight'].transpose(3, 2, 0, 1),
r'b4\.conv\.bias', lambda: tf_params[f'4x4/Conv/bias'],
r'b4\.fc\.weight', lambda: tf_params[f'4x4/Dense0/weight'].transpose(),
r'b4\.fc\.bias', lambda: tf_params[f'4x4/Dense0/bias'],
r'b4\.out\.weight', lambda: tf_params[f'Output/weight'].transpose(),
r'b4\.out\.bias', lambda: tf_params[f'Output/bias'],
r'.*\.resample_filter', None,
)
return D
#----------------------------------------------------------------------------
@click.command()
@click.option('--source', help='Input pickle', required=True, metavar='PATH')
@click.option('--dest', help='Output pickle', required=True, metavar='PATH')
@click.option('--force-fp16', help='Force the networks to use FP16', type=bool, default=False, metavar='BOOL', show_default=True)
def convert_network_pickle(source, dest, force_fp16):
"""Convert legacy network pickle into the native PyTorch format.
The tool is able to load the main network configurations exported using the TensorFlow version of StyleGAN2 or StyleGAN2-ADA.
It does not support e.g. StyleGAN2-ADA comparison methods, StyleGAN2 configs A-D, or StyleGAN1 networks.
Example:
\b
python legacy.py \\
--source=https://nvlabs-fi-cdn.nvidia.com/stylegan2/networks/stylegan2-cat-config-f.pkl \\
--dest=stylegan2-cat-config-f.pkl
"""
print(f'Loading "{source}"...')
with dnnlib.util.open_url(source) as f:
data = load_network_pkl(f, force_fp16=force_fp16)
print(f'Saving "{dest}"...')
with open(dest, 'wb') as f:
pickle.dump(data, f)
print('Done.')
#----------------------------------------------------------------------------
if __name__ == "__main__":
convert_network_pickle() # pylint: disable=no-value-for-parameter
#----------------------------------------------------------------------------