File size: 13,358 Bytes
39b8211
29580f3
 
 
 
dfd748f
29580f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a4e089
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39b8211
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29580f3
 
 
 
 
 
 
 
 
 
 
 
 
02bc5ce
29580f3
2a4e089
29580f3
dfd748f
29580f3
2a4e089
29580f3
 
 
 
 
 
2a4e089
dfd748f
d0f5140
2a4e089
39b8211
2a4e089
d775f14
 
2a4e089
d0f5140
 
 
29580f3
39b8211
29580f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0f5140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29580f3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

import gradio as gr
from app import demo as app
import os

_docs = {'image_annotator': {'description': 'Creates a component to annotate images with bounding boxes. The bounding boxes can be created and edited by the user or be passed by code.\nIt is also possible to predefine a set of valid classes and colors.', 'members': {'__init__': {'value': {'type': 'dict | None', 'default': 'None', 'description': "A dict or None. The dictionary must contain a key 'image' with either an URL to an image, a numpy image or a PIL image. Optionally it may contain a key 'boxes' with a list of boxes. Each box must be a dict wit the keys: 'xmin', 'ymin', 'xmax' and 'ymax' with the absolute image coordinates of the box. Optionally can also include the keys 'label' and 'color' describing the label and color of the box. Color must be a tuple of RGB values (e.g. `(255,255,255)`)."}, 'boxes_alpha': {'type': 'float | None', 'default': 'None', 'description': 'Opacity of the bounding boxes 0 and 1.'}, 'label_list': {'type': 'list[str] | None', 'default': 'None', 'description': 'List of valid labels.'}, 'label_colors': {'type': 'list[str] | None', 'default': 'None', 'description': 'Optional list of colors for each label when `label_list` is used. Colors must be a tuple of RGB values (e.g. `(255,255,255)`).'}, 'box_min_size': {'type': 'int | None', 'default': 'None', 'description': 'Minimum valid bounding box size.'}, 'handle_size': {'type': 'int | None', 'default': 'None', 'description': 'Size of the bounding box resize handles.'}, 'box_thickness': {'type': 'int | None', 'default': 'None', 'description': 'Thickness of the bounding box outline.'}, 'box_selected_thickness': {'type': 'int | None', 'default': 'None', 'description': 'Thickness of the bounding box outline when it is selected.'}, 'disable_edit_boxes': {'type': 'bool | None', 'default': 'None', 'description': 'Disables the ability to set and edit the label and color of the boxes.'}, 'single_box': {'type': 'bool', 'default': 'False', 'description': 'If True, at most one box can be drawn.'}, 'height': {'type': 'int | str | None', 'default': 'None', 'description': 'The height of the displayed image, specified in pixels if a number is passed, or in CSS units if a string is passed.'}, 'width': {'type': 'int | str | None', 'default': 'None', 'description': 'The width of the displayed image, specified in pixels if a number is passed, or in CSS units if a string is passed.'}, 'image_mode': {'type': '"1"\n    | "L"\n    | "P"\n    | "RGB"\n    | "RGBA"\n    | "CMYK"\n    | "YCbCr"\n    | "LAB"\n    | "HSV"\n    | "I"\n    | "F"', 'default': '"RGB"', 'description': '"RGB" if color, or "L" if black and white. See https://pillow.readthedocs.io/en/stable/handbook/concepts.html for other supported image modes and their meaning.'}, 'sources': {'type': 'list["upload" | "webcam" | "clipboard"] | None', 'default': '["upload", "webcam", "clipboard"]', 'description': 'List of sources for the image. "upload" creates a box where user can drop an image file, "webcam" allows user to take snapshot from their webcam, "clipboard" allows users to paste an image from the clipboard. If None, defaults to ["upload", "webcam", "clipboard"].'}, 'image_type': {'type': '"numpy" | "pil" | "filepath"', 'default': '"numpy"', 'description': 'The format the image is converted before being passed into the prediction function. "numpy" converts the image to a numpy array with shape (height, width, 3) and values from 0 to 255, "pil" converts the image to a PIL image object, "filepath" passes a str path to a temporary file containing the image. If the image is SVG, the `type` is ignored and the filepath of the SVG is returned.'}, 'label': {'type': 'str | None', 'default': 'None', 'description': 'The label for this component. Appears above the component and is also used as the header if there are a table of examples for this component. If None and used in a `gr.Interface`, the label will be the name of the parameter this component is assigned to.'}, 'container': {'type': 'bool', 'default': 'True', 'description': 'If True, will place the component in a container - providing some extra padding around the border.'}, 'scale': {'type': 'int | None', 'default': 'None', 'description': 'relative size compared to adjacent Components. For example if Components A and B are in a Row, and A has scale=2, and B has scale=1, A will be twice as wide as B. Should be an integer. scale applies in Rows, and to top-level Components in Blocks where fill_height=True.'}, 'min_width': {'type': 'int', 'default': '160', 'description': 'minimum pixel width, will wrap if not sufficient screen space to satisfy this value. If a certain scale value results in this Component being narrower than min_width, the min_width parameter will be respected first.'}, 'interactive': {'type': 'bool | None', 'default': 'True', 'description': 'if True, will allow users to upload and annotate an image; if False, can only be used to display annotated images.'}, 'visible': {'type': 'bool', 'default': 'True', 'description': 'If False, component will be hidden.'}, 'elem_id': {'type': 'str | None', 'default': 'None', 'description': 'An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles.'}, 'elem_classes': {'type': 'list[str] | str | None', 'default': 'None', 'description': 'An optional list of strings that are assigned as the classes of this component in the HTML DOM. Can be used for targeting CSS styles.'}, 'render': {'type': 'bool', 'default': 'True', 'description': 'If False, component will not render be rendered in the Blocks context. Should be used if the intention is to assign event listeners now but render the component later.'}, 'show_label': {'type': 'bool | None', 'default': 'None', 'description': 'if True, will display label.'}, 'show_download_button': {'type': 'bool', 'default': 'True', 'description': 'If True, will show a button to download the image.'}, 'show_share_button': {'type': 'bool | None', 'default': 'None', 'description': 'If True, will show a share icon in the corner of the component that allows user to share outputs to Hugging Face Spaces Discussions. If False, icon does not appear. If set to None (default behavior), then the icon appears if this Gradio app is launched on Spaces, but not otherwise.'}, 'show_clear_button': {'type': 'bool | None', 'default': 'True', 'description': 'If True, will show a button to clear the current image.'}, 'show_remove_button': {'type': 'bool | None', 'default': 'None', 'description': 'If True, will show a button to remove the selected bounding box.'}, 'handles_cursor': {'type': 'bool | None', 'default': 'True', 'description': 'If True, the cursor will change when hovering over box handles in drag mode. Can be CPU-intensive.'}}, 'postprocess': {'value': {'type': 'dict | None', 'description': 'A dict with an image and an optional list of boxes or None.'}}, 'preprocess': {'return': {'type': 'dict | None', 'description': 'A dict with the image and boxes or None.'}, 'value': None}}, 'events': {'clear': {'type': None, 'default': None, 'description': 'This listener is triggered when the user clears the image_annotator using the X button for the component.'}, 'change': {'type': None, 'default': None, 'description': 'Triggered when the value of the image_annotator changes either because of user input (e.g. a user types in a textbox) OR because of a function update (e.g. an image receives a value from the output of an event trigger). See `.input()` for a listener that is only triggered by user input.'}, 'upload': {'type': None, 'default': None, 'description': 'This listener is triggered when the user uploads a file into the image_annotator.'}}}, '__meta__': {'additional_interfaces': {}, 'user_fn_refs': {'image_annotator': []}}}

abs_path = os.path.join(os.path.dirname(__file__), "css.css")

with gr.Blocks(
    css=abs_path,
    theme=gr.themes.Default(
        font_mono=[
            gr.themes.GoogleFont("Inconsolata"),
            "monospace",
        ],
    ),
) as demo:
    gr.Markdown(
"""
# `gradio_image_annotation`

<div style="display: flex; gap: 7px;">
<a href="https://pypi.org/project/gradio_image_annotation/" target="_blank"><img alt="PyPI - Version" src="https://img.shields.io/pypi/v/gradio_image_annotation"></a>  
</div>

A Gradio component that can be used to annotate images with bounding boxes.
""", elem_classes=["md-custom"], header_links=True)
    app.render()
    gr.Markdown(
"""
## Installation

```bash
pip install gradio_image_annotation
```

## Usage

```python
import gradio as gr
from gradio_image_annotation import image_annotator


example_annotation = {
    "image": "https://gradio-builds.s3.amazonaws.com/demo-files/base.png",
    "boxes": [
        {
            "xmin": 636,
            "ymin": 575,
            "xmax": 801,
            "ymax": 697,
            "label": "Vehicle",
            "color": (255, 0, 0)
        },
        {
            "xmin": 360,
            "ymin": 615,
            "xmax": 386,
            "ymax": 702,
            "label": "Person",
            "color": (0, 255, 0)
        }
    ]
}

examples_crop = [
    {
        "image": "https://raw.githubusercontent.com/gradio-app/gradio/main/guides/assets/logo.png",
        "boxes": [
            {
                "xmin": 30,
                "ymin": 70,
                "xmax": 530,
                "ymax": 500,
                "color": (100, 200, 255),
            }
        ],
    },
    {
        "image": "https://gradio-builds.s3.amazonaws.com/demo-files/base.png",
        "boxes": [
            {
                "xmin": 636,
                "ymin": 575,
                "xmax": 801,
                "ymax": 697,
                "color": (255, 0, 0),
            },
        ],
    },
]


def crop(annotations):
    if annotations["boxes"]:
        box = annotations["boxes"][0]
        return annotations["image"][
            box["ymin"]:box["ymax"],
            box["xmin"]:box["xmax"]
        ]
    return None


def get_boxes_json(annotations):
    return annotations["boxes"]


with gr.Blocks() as demo:
    with gr.Tab("Object annotation", id="tab_object_annotation"):
        annotator = image_annotator(
            example_annotation,
            label_list=["Person", "Vehicle"],
            label_colors=[(0, 255, 0), (255, 0, 0)],
        )
        button_get = gr.Button("Get bounding boxes")
        json_boxes = gr.JSON()
        button_get.click(get_boxes_json, annotator, json_boxes)

    with gr.Tab("Crop", id="tab_crop"):
        with gr.Row():
            annotator_crop = image_annotator(
                examples_crop[0],
                image_type="numpy",
                disable_edit_boxes=True,
                single_box=True,
            )
            image_crop = gr.Image()
        button_crop = gr.Button("Crop")
        button_crop.click(crop, annotator_crop, image_crop)

        gr.Examples(examples_crop, annotator_crop)

if __name__ == "__main__":
    demo.launch()

```
""", elem_classes=["md-custom"], header_links=True)


    gr.Markdown("""
## `image_annotator`

### Initialization
""", elem_classes=["md-custom"], header_links=True)

    gr.ParamViewer(value=_docs["image_annotator"]["members"]["__init__"], linkify=[])


    gr.Markdown("### Events")
    gr.ParamViewer(value=_docs["image_annotator"]["events"], linkify=['Event'])




    gr.Markdown("""

### User function

The impact on the users predict function varies depending on whether the component is used as an input or output for an event (or both).

- When used as an Input, the component only impacts the input signature of the user function.
- When used as an output, the component only impacts the return signature of the user function.

The code snippet below is accurate in cases where the component is used as both an input and an output.

- **As input:** Is passed, a dict with the image and boxes or None.
- **As output:** Should return, a dict with an image and an optional list of boxes or None.

 ```python
def predict(
    value: dict | None
) -> dict | None:
    return value
```
""", elem_classes=["md-custom", "image_annotator-user-fn"], header_links=True)




    demo.load(None, js=r"""function() {
    const refs = {};
    const user_fn_refs = {
          image_annotator: [], };
    requestAnimationFrame(() => {

        Object.entries(user_fn_refs).forEach(([key, refs]) => {
            if (refs.length > 0) {
                const el = document.querySelector(`.${key}-user-fn`);
                if (!el) return;
                refs.forEach(ref => {
                    el.innerHTML = el.innerHTML.replace(
                        new RegExp("\\b"+ref+"\\b", "g"),
                        `<a href="#h-${ref.toLowerCase()}">${ref}</a>`
                    );
                })
            }
        })

        Object.entries(refs).forEach(([key, refs]) => {
            if (refs.length > 0) {
                const el = document.querySelector(`.${key}`);
                if (!el) return;
                refs.forEach(ref => {
                    el.innerHTML = el.innerHTML.replace(
                        new RegExp("\\b"+ref+"\\b", "g"),
                        `<a href="#h-${ref.toLowerCase()}">${ref}</a>`
                    );
                })
            }
        })
    })
}

""")

demo.launch()