Spaces:
Running
on
A10G
Running
on
A10G
import PIL | |
from PIL import Image, ImageDraw ,ImageFont | |
from matplotlib import pyplot as plt | |
import torchvision.transforms as T | |
import os | |
import torch | |
import yaml | |
def show_torch_img(img): | |
img = to_np_image(img) | |
plt.imshow(img) | |
plt.axis("off") | |
def to_np_image(all_images): | |
all_images = (all_images.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8).cpu().numpy()[0] | |
return all_images | |
def tensor_to_pil(tensor_imgs): | |
if type(tensor_imgs) == list: | |
tensor_imgs = torch.cat(tensor_imgs) | |
tensor_imgs = (tensor_imgs / 2 + 0.5).clamp(0, 1) | |
to_pil = T.ToPILImage() | |
pil_imgs = [to_pil(img) for img in tensor_imgs] | |
return pil_imgs | |
def pil_to_tensor(pil_imgs): | |
to_torch = T.ToTensor() | |
if type(pil_imgs) == PIL.Image.Image: | |
tensor_imgs = to_torch(pil_imgs).unsqueeze(0)*2-1 | |
elif type(pil_imgs) == list: | |
tensor_imgs = torch.cat([to_torch(pil_imgs).unsqueeze(0)*2-1 for img in pil_imgs]).to(device) | |
else: | |
raise Exception("Input need to be PIL.Image or list of PIL.Image") | |
return tensor_imgs | |
## TODO implement this | |
# n = 10 | |
# num_rows = 4 | |
# num_col = n // num_rows | |
# num_col = num_col + 1 if n % num_rows else num_col | |
# num_col | |
def add_margin(pil_img, top = 0, right = 0, bottom = 0, | |
left = 0, color = (255,255,255)): | |
width, height = pil_img.size | |
new_width = width + right + left | |
new_height = height + top + bottom | |
result = Image.new(pil_img.mode, (new_width, new_height), color) | |
result.paste(pil_img, (left, top)) | |
return result | |
def image_grid(imgs, rows = 1, cols = None, | |
size = None, | |
titles = None, text_pos = (0, 0)): | |
if type(imgs) == list and type(imgs[0]) == torch.Tensor: | |
imgs = torch.cat(imgs) | |
if type(imgs) == torch.Tensor: | |
imgs = tensor_to_pil(imgs) | |
if not size is None: | |
imgs = [img.resize((size,size)) for img in imgs] | |
if cols is None: | |
cols = len(imgs) | |
assert len(imgs) >= rows*cols | |
top=20 | |
w, h = imgs[0].size | |
delta = 0 | |
if len(imgs)> 1 and not imgs[1].size[1] == h: | |
delta = top | |
h = imgs[1].size[1] | |
if not titles is None: | |
font = ImageFont.truetype("/usr/share/fonts/truetype/freefont/FreeMono.ttf", | |
size = 20, encoding="unic") | |
h = top + h | |
grid = Image.new('RGB', size=(cols*w, rows*h+delta)) | |
for i, img in enumerate(imgs): | |
if not titles is None: | |
img = add_margin(img, top = top, bottom = 0,left=0) | |
draw = ImageDraw.Draw(img) | |
draw.text(text_pos, titles[i],(0,0,0), | |
font = font) | |
if not delta == 0 and i > 0: | |
grid.paste(img, box=(i%cols*w, i//cols*h+delta)) | |
else: | |
grid.paste(img, box=(i%cols*w, i//cols*h)) | |
return grid | |
""" | |
input_folder - dataset folder | |
""" | |
def load_dataset(input_folder): | |
# full_file_names = glob.glob(input_folder) | |
# class_names = [x[0] for x in os.walk(input_folder)] | |
class_names = next(os.walk(input_folder))[1] | |
class_names[:] = [d for d in class_names if not d[0] == '.'] | |
file_names=[] | |
for class_name in class_names: | |
cur_path = os.path.join(input_folder, class_name) | |
filenames = next(os.walk(cur_path), (None, None, []))[2] | |
filenames = [f for f in filenames if not f[0] == '.'] | |
file_names.append(filenames) | |
return class_names, file_names | |
def dataset_from_yaml(yaml_location): | |
with open(yaml_location, 'r') as stream: | |
data_loaded = yaml.safe_load(stream) | |
return data_loaded |