Spaces:
Running
on
A10G
Running
on
A10G
Linoy Tsaban
commited on
Commit
•
162c70e
1
Parent(s):
11ce2aa
Create modified_pipeline_semantic_stable_diffusion.py
Browse files
modified_pipeline_semantic_stable_diffusion.py
ADDED
@@ -0,0 +1,757 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import inspect
|
3 |
+
import warnings
|
4 |
+
from itertools import repeat
|
5 |
+
from typing import Callable, List, Optional, Union
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
9 |
+
|
10 |
+
from diffusers.image_processor import VaeImageProcessor
|
11 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
12 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
13 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
14 |
+
from diffusers.utils import logging, randn_tensor
|
15 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
16 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
17 |
+
# from . import SemanticStableDiffusionPipelineOutput
|
18 |
+
|
19 |
+
|
20 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
21 |
+
|
22 |
+
|
23 |
+
class SemanticStableDiffusionPipeline(DiffusionPipeline):
|
24 |
+
r"""
|
25 |
+
Pipeline for text-to-image generation with latent editing.
|
26 |
+
|
27 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
28 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
29 |
+
|
30 |
+
This model builds on the implementation of ['StableDiffusionPipeline']
|
31 |
+
|
32 |
+
Args:
|
33 |
+
vae ([`AutoencoderKL`]):
|
34 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
35 |
+
text_encoder ([`CLIPTextModel`]):
|
36 |
+
Frozen text-encoder. Stable Diffusion uses the text portion of
|
37 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
38 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
39 |
+
tokenizer (`CLIPTokenizer`):
|
40 |
+
Tokenizer of class
|
41 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
42 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
43 |
+
scheduler ([`SchedulerMixin`]):
|
44 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
|
45 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
46 |
+
safety_checker ([`Q16SafetyChecker`]):
|
47 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
48 |
+
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
|
49 |
+
feature_extractor ([`CLIPImageProcessor`]):
|
50 |
+
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
51 |
+
"""
|
52 |
+
|
53 |
+
_optional_components = ["safety_checker", "feature_extractor"]
|
54 |
+
|
55 |
+
def __init__(
|
56 |
+
self,
|
57 |
+
vae: AutoencoderKL,
|
58 |
+
text_encoder: CLIPTextModel,
|
59 |
+
tokenizer: CLIPTokenizer,
|
60 |
+
unet: UNet2DConditionModel,
|
61 |
+
scheduler: KarrasDiffusionSchedulers,
|
62 |
+
safety_checker: StableDiffusionSafetyChecker,
|
63 |
+
feature_extractor: CLIPImageProcessor,
|
64 |
+
requires_safety_checker: bool = True,
|
65 |
+
):
|
66 |
+
super().__init__()
|
67 |
+
|
68 |
+
if safety_checker is None and requires_safety_checker:
|
69 |
+
logger.warning(
|
70 |
+
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
71 |
+
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
72 |
+
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
73 |
+
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
74 |
+
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
75 |
+
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
76 |
+
)
|
77 |
+
|
78 |
+
if safety_checker is not None and feature_extractor is None:
|
79 |
+
raise ValueError(
|
80 |
+
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
81 |
+
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
82 |
+
)
|
83 |
+
|
84 |
+
self.register_modules(
|
85 |
+
vae=vae,
|
86 |
+
text_encoder=text_encoder,
|
87 |
+
tokenizer=tokenizer,
|
88 |
+
unet=unet,
|
89 |
+
scheduler=scheduler,
|
90 |
+
safety_checker=safety_checker,
|
91 |
+
feature_extractor=feature_extractor,
|
92 |
+
)
|
93 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
94 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
95 |
+
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
96 |
+
|
97 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
98 |
+
def run_safety_checker(self, image, device, dtype):
|
99 |
+
if self.safety_checker is None:
|
100 |
+
has_nsfw_concept = None
|
101 |
+
else:
|
102 |
+
if torch.is_tensor(image):
|
103 |
+
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
|
104 |
+
else:
|
105 |
+
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
106 |
+
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
|
107 |
+
image, has_nsfw_concept = self.safety_checker(
|
108 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
109 |
+
)
|
110 |
+
return image, has_nsfw_concept
|
111 |
+
|
112 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
|
113 |
+
def decode_latents(self, latents):
|
114 |
+
warnings.warn(
|
115 |
+
"The decode_latents method is deprecated and will be removed in a future version. Please"
|
116 |
+
" use VaeImageProcessor instead",
|
117 |
+
FutureWarning,
|
118 |
+
)
|
119 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
120 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
121 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
122 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
123 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
124 |
+
return image
|
125 |
+
|
126 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
127 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
128 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
129 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
130 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
131 |
+
# and should be between [0, 1]
|
132 |
+
|
133 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
134 |
+
extra_step_kwargs = {}
|
135 |
+
if accepts_eta:
|
136 |
+
extra_step_kwargs["eta"] = eta
|
137 |
+
|
138 |
+
# check if the scheduler accepts generator
|
139 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
140 |
+
if accepts_generator:
|
141 |
+
extra_step_kwargs["generator"] = generator
|
142 |
+
return extra_step_kwargs
|
143 |
+
|
144 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.check_inputs
|
145 |
+
def check_inputs(
|
146 |
+
self,
|
147 |
+
prompt,
|
148 |
+
height,
|
149 |
+
width,
|
150 |
+
callback_steps,
|
151 |
+
negative_prompt=None,
|
152 |
+
prompt_embeds=None,
|
153 |
+
negative_prompt_embeds=None,
|
154 |
+
):
|
155 |
+
if height % 8 != 0 or width % 8 != 0:
|
156 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
157 |
+
|
158 |
+
if (callback_steps is None) or (
|
159 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
160 |
+
):
|
161 |
+
raise ValueError(
|
162 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
163 |
+
f" {type(callback_steps)}."
|
164 |
+
)
|
165 |
+
|
166 |
+
if prompt is not None and prompt_embeds is not None:
|
167 |
+
raise ValueError(
|
168 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
169 |
+
" only forward one of the two."
|
170 |
+
)
|
171 |
+
elif prompt is None and prompt_embeds is None:
|
172 |
+
raise ValueError(
|
173 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
174 |
+
)
|
175 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
176 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
177 |
+
|
178 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
179 |
+
raise ValueError(
|
180 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
181 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
182 |
+
)
|
183 |
+
|
184 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
185 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
186 |
+
raise ValueError(
|
187 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
188 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
189 |
+
f" {negative_prompt_embeds.shape}."
|
190 |
+
)
|
191 |
+
|
192 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
193 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
194 |
+
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
195 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
196 |
+
raise ValueError(
|
197 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
198 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
199 |
+
)
|
200 |
+
|
201 |
+
if latents is None:
|
202 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
203 |
+
else:
|
204 |
+
latents = latents.to(device)
|
205 |
+
|
206 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
207 |
+
latents = latents * self.scheduler.init_noise_sigma
|
208 |
+
return latents
|
209 |
+
|
210 |
+
@torch.no_grad()
|
211 |
+
def __call__(
|
212 |
+
self,
|
213 |
+
prompt: Union[str, List[str]],
|
214 |
+
height: Optional[int] = None,
|
215 |
+
width: Optional[int] = None,
|
216 |
+
num_inference_steps: int = 50,
|
217 |
+
guidance_scale: float = 7.5,
|
218 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
219 |
+
num_images_per_prompt: int = 1,
|
220 |
+
eta: float = 0.0,
|
221 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
222 |
+
latents: Optional[torch.FloatTensor] = None,
|
223 |
+
output_type: Optional[str] = "pil",
|
224 |
+
return_dict: bool = True,
|
225 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
226 |
+
callback_steps: int = 1,
|
227 |
+
editing_prompt: Optional[Union[str, List[str]]] = None,
|
228 |
+
editing_prompt_embeddings: Optional[torch.Tensor] = None,
|
229 |
+
reverse_editing_direction: Optional[Union[bool, List[bool]]] = False,
|
230 |
+
edit_guidance_scale: Optional[Union[float, List[float]]] = 5,
|
231 |
+
edit_warmup_steps: Optional[Union[int, List[int]]] = 10,
|
232 |
+
edit_cooldown_steps: Optional[Union[int, List[int]]] = None,
|
233 |
+
edit_threshold: Optional[Union[float, List[float]]] = 0.9,
|
234 |
+
edit_momentum_scale: Optional[float] = 0.1,
|
235 |
+
edit_mom_beta: Optional[float] = 0.4,
|
236 |
+
edit_weights: Optional[List[float]] = None,
|
237 |
+
sem_guidance: Optional[List[torch.Tensor]] = None,
|
238 |
+
|
239 |
+
# DDPM additions
|
240 |
+
use_ddpm: bool = False,
|
241 |
+
wts: Optional[List[torch.Tensor]] = None,
|
242 |
+
zs: Optional[List[torch.Tensor]] = None
|
243 |
+
):
|
244 |
+
r"""
|
245 |
+
Function invoked when calling the pipeline for generation.
|
246 |
+
|
247 |
+
Args:
|
248 |
+
prompt (`str` or `List[str]`):
|
249 |
+
The prompt or prompts to guide the image generation.
|
250 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
251 |
+
The height in pixels of the generated image.
|
252 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
253 |
+
The width in pixels of the generated image.
|
254 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
255 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
256 |
+
expense of slower inference.
|
257 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
258 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
259 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
260 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
261 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
262 |
+
usually at the expense of lower image quality.
|
263 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
264 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
265 |
+
if `guidance_scale` is less than `1`).
|
266 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
267 |
+
The number of images to generate per prompt.
|
268 |
+
eta (`float`, *optional*, defaults to 0.0):
|
269 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
270 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
271 |
+
generator (`torch.Generator`, *optional*):
|
272 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
273 |
+
to make generation deterministic.
|
274 |
+
latents (`torch.FloatTensor`, *optional*):
|
275 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
276 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
277 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
278 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
279 |
+
The output format of the generate image. Choose between
|
280 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
281 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
282 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
283 |
+
plain tuple.
|
284 |
+
callback (`Callable`, *optional*):
|
285 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
286 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
287 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
288 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
289 |
+
called at every step.
|
290 |
+
editing_prompt (`str` or `List[str]`, *optional*):
|
291 |
+
The prompt or prompts to use for Semantic guidance. Semantic guidance is disabled by setting
|
292 |
+
`editing_prompt = None`. Guidance direction of prompt should be specified via
|
293 |
+
`reverse_editing_direction`.
|
294 |
+
editing_prompt_embeddings (`torch.Tensor>`, *optional*):
|
295 |
+
Pre-computed embeddings to use for semantic guidance. Guidance direction of embedding should be
|
296 |
+
specified via `reverse_editing_direction`.
|
297 |
+
reverse_editing_direction (`bool` or `List[bool]`, *optional*, defaults to `False`):
|
298 |
+
Whether the corresponding prompt in `editing_prompt` should be increased or decreased.
|
299 |
+
edit_guidance_scale (`float` or `List[float]`, *optional*, defaults to 5):
|
300 |
+
Guidance scale for semantic guidance. If provided as list values should correspond to `editing_prompt`.
|
301 |
+
`edit_guidance_scale` is defined as `s_e` of equation 6 of [SEGA
|
302 |
+
Paper](https://arxiv.org/pdf/2301.12247.pdf).
|
303 |
+
edit_warmup_steps (`float` or `List[float]`, *optional*, defaults to 10):
|
304 |
+
Number of diffusion steps (for each prompt) for which semantic guidance will not be applied. Momentum
|
305 |
+
will still be calculated for those steps and applied once all warmup periods are over.
|
306 |
+
`edit_warmup_steps` is defined as `delta` (δ) of [SEGA Paper](https://arxiv.org/pdf/2301.12247.pdf).
|
307 |
+
edit_cooldown_steps (`float` or `List[float]`, *optional*, defaults to `None`):
|
308 |
+
Number of diffusion steps (for each prompt) after which semantic guidance will no longer be applied.
|
309 |
+
edit_threshold (`float` or `List[float]`, *optional*, defaults to 0.9):
|
310 |
+
Threshold of semantic guidance.
|
311 |
+
edit_momentum_scale (`float`, *optional*, defaults to 0.1):
|
312 |
+
Scale of the momentum to be added to the semantic guidance at each diffusion step. If set to 0.0
|
313 |
+
momentum will be disabled. Momentum is already built up during warmup, i.e. for diffusion steps smaller
|
314 |
+
than `sld_warmup_steps`. Momentum will only be added to latent guidance once all warmup periods are
|
315 |
+
finished. `edit_momentum_scale` is defined as `s_m` of equation 7 of [SEGA
|
316 |
+
Paper](https://arxiv.org/pdf/2301.12247.pdf).
|
317 |
+
edit_mom_beta (`float`, *optional*, defaults to 0.4):
|
318 |
+
Defines how semantic guidance momentum builds up. `edit_mom_beta` indicates how much of the previous
|
319 |
+
momentum will be kept. Momentum is already built up during warmup, i.e. for diffusion steps smaller
|
320 |
+
than `edit_warmup_steps`. `edit_mom_beta` is defined as `beta_m` (β) of equation 8 of [SEGA
|
321 |
+
Paper](https://arxiv.org/pdf/2301.12247.pdf).
|
322 |
+
edit_weights (`List[float]`, *optional*, defaults to `None`):
|
323 |
+
Indicates how much each individual concept should influence the overall guidance. If no weights are
|
324 |
+
provided all concepts are applied equally. `edit_mom_beta` is defined as `g_i` of equation 9 of [SEGA
|
325 |
+
Paper](https://arxiv.org/pdf/2301.12247.pdf).
|
326 |
+
sem_guidance (`List[torch.Tensor]`, *optional*):
|
327 |
+
List of pre-generated guidance vectors to be applied at generation. Length of the list has to
|
328 |
+
correspond to `num_inference_steps`.
|
329 |
+
|
330 |
+
Returns:
|
331 |
+
[`~pipelines.semantic_stable_diffusion.SemanticStableDiffusionPipelineOutput`] or `tuple`:
|
332 |
+
[`~pipelines.semantic_stable_diffusion.SemanticStableDiffusionPipelineOutput`] if `return_dict` is True,
|
333 |
+
otherwise a `tuple. When returning a tuple, the first element is a list with the generated images, and the
|
334 |
+
second element is a list of `bool`s denoting whether the corresponding generated image likely represents
|
335 |
+
"not-safe-for-work" (nsfw) content, according to the `safety_checker`.
|
336 |
+
"""
|
337 |
+
# 0. Default height and width to unet
|
338 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
339 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
340 |
+
|
341 |
+
# 1. Check inputs. Raise error if not correct
|
342 |
+
self.check_inputs(prompt, height, width, callback_steps)
|
343 |
+
|
344 |
+
# 2. Define call parameters
|
345 |
+
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
346 |
+
|
347 |
+
if editing_prompt:
|
348 |
+
enable_edit_guidance = True
|
349 |
+
if isinstance(editing_prompt, str):
|
350 |
+
editing_prompt = [editing_prompt]
|
351 |
+
enabled_editing_prompts = len(editing_prompt)
|
352 |
+
elif editing_prompt_embeddings is not None:
|
353 |
+
enable_edit_guidance = True
|
354 |
+
enabled_editing_prompts = editing_prompt_embeddings.shape[0]
|
355 |
+
else:
|
356 |
+
enabled_editing_prompts = 0
|
357 |
+
enable_edit_guidance = False
|
358 |
+
|
359 |
+
# get prompt text embeddings
|
360 |
+
text_inputs = self.tokenizer(
|
361 |
+
prompt,
|
362 |
+
padding="max_length",
|
363 |
+
max_length=self.tokenizer.model_max_length,
|
364 |
+
return_tensors="pt",
|
365 |
+
)
|
366 |
+
text_input_ids = text_inputs.input_ids
|
367 |
+
|
368 |
+
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
|
369 |
+
removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
|
370 |
+
logger.warning(
|
371 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
372 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
373 |
+
)
|
374 |
+
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
|
375 |
+
text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0]
|
376 |
+
|
377 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
378 |
+
bs_embed, seq_len, _ = text_embeddings.shape
|
379 |
+
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
|
380 |
+
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
381 |
+
|
382 |
+
if enable_edit_guidance:
|
383 |
+
# get safety text embeddings
|
384 |
+
if editing_prompt_embeddings is None:
|
385 |
+
edit_concepts_input = self.tokenizer(
|
386 |
+
[x for item in editing_prompt for x in repeat(item, batch_size)],
|
387 |
+
padding="max_length",
|
388 |
+
max_length=self.tokenizer.model_max_length,
|
389 |
+
return_tensors="pt",
|
390 |
+
)
|
391 |
+
|
392 |
+
edit_concepts_input_ids = edit_concepts_input.input_ids
|
393 |
+
|
394 |
+
if edit_concepts_input_ids.shape[-1] > self.tokenizer.model_max_length:
|
395 |
+
removed_text = self.tokenizer.batch_decode(
|
396 |
+
edit_concepts_input_ids[:, self.tokenizer.model_max_length :]
|
397 |
+
)
|
398 |
+
logger.warning(
|
399 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
400 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
401 |
+
)
|
402 |
+
edit_concepts_input_ids = edit_concepts_input_ids[:, : self.tokenizer.model_max_length]
|
403 |
+
edit_concepts = self.text_encoder(edit_concepts_input_ids.to(self.device))[0]
|
404 |
+
else:
|
405 |
+
edit_concepts = editing_prompt_embeddings.to(self.device).repeat(batch_size, 1, 1)
|
406 |
+
|
407 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
408 |
+
bs_embed_edit, seq_len_edit, _ = edit_concepts.shape
|
409 |
+
edit_concepts = edit_concepts.repeat(1, num_images_per_prompt, 1)
|
410 |
+
edit_concepts = edit_concepts.view(bs_embed_edit * num_images_per_prompt, seq_len_edit, -1)
|
411 |
+
|
412 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
413 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
414 |
+
# corresponds to doing no classifier free guidance.
|
415 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
416 |
+
# get unconditional embeddings for classifier free guidance
|
417 |
+
|
418 |
+
if do_classifier_free_guidance:
|
419 |
+
uncond_tokens: List[str]
|
420 |
+
if negative_prompt is None:
|
421 |
+
uncond_tokens = [""]
|
422 |
+
elif type(prompt) is not type(negative_prompt):
|
423 |
+
raise TypeError(
|
424 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
425 |
+
f" {type(prompt)}."
|
426 |
+
)
|
427 |
+
elif isinstance(negative_prompt, str):
|
428 |
+
uncond_tokens = [negative_prompt]
|
429 |
+
elif batch_size != len(negative_prompt):
|
430 |
+
raise ValueError(
|
431 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
432 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
433 |
+
" the batch size of `prompt`."
|
434 |
+
)
|
435 |
+
else:
|
436 |
+
uncond_tokens = negative_prompt
|
437 |
+
|
438 |
+
max_length = text_input_ids.shape[-1]
|
439 |
+
uncond_input = self.tokenizer(
|
440 |
+
uncond_tokens,
|
441 |
+
padding="max_length",
|
442 |
+
max_length=max_length,
|
443 |
+
truncation=True,
|
444 |
+
return_tensors="pt",
|
445 |
+
)
|
446 |
+
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
|
447 |
+
|
448 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
449 |
+
seq_len = uncond_embeddings.shape[1]
|
450 |
+
uncond_embeddings = uncond_embeddings.repeat(batch_size, num_images_per_prompt, 1)
|
451 |
+
uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1)
|
452 |
+
|
453 |
+
# For classifier free guidance, we need to do two forward passes.
|
454 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
455 |
+
# to avoid doing two forward passes
|
456 |
+
if enable_edit_guidance:
|
457 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings, edit_concepts])
|
458 |
+
else:
|
459 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
460 |
+
# get the initial random noise unless the user supplied it
|
461 |
+
|
462 |
+
# 4. Prepare timesteps
|
463 |
+
self.scheduler.set_timesteps(num_inference_steps, device=self.device)
|
464 |
+
timesteps = self.scheduler.timesteps
|
465 |
+
if use_ddpm:
|
466 |
+
t_to_idx = {int(v):k for k,v in enumerate(timesteps[-zs.shape[0]:])}
|
467 |
+
timesteps = timesteps[-zs.shape[0]:]
|
468 |
+
|
469 |
+
# 5. Prepare latent variables
|
470 |
+
num_channels_latents = self.unet.config.in_channels
|
471 |
+
latents = self.prepare_latents(
|
472 |
+
batch_size * num_images_per_prompt,
|
473 |
+
num_channels_latents,
|
474 |
+
height,
|
475 |
+
width,
|
476 |
+
text_embeddings.dtype,
|
477 |
+
self.device,
|
478 |
+
generator,
|
479 |
+
latents,
|
480 |
+
)
|
481 |
+
|
482 |
+
# 6. Prepare extra step kwargs.
|
483 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
484 |
+
|
485 |
+
# Initialize edit_momentum to None
|
486 |
+
edit_momentum = None
|
487 |
+
|
488 |
+
self.uncond_estimates = None
|
489 |
+
self.text_estimates = None
|
490 |
+
self.edit_estimates = None
|
491 |
+
self.sem_guidance = None
|
492 |
+
|
493 |
+
for i, t in enumerate(self.progress_bar(timesteps)):
|
494 |
+
# expand the latents if we are doing classifier free guidance
|
495 |
+
latent_model_input = (
|
496 |
+
torch.cat([latents] * (2 + enabled_editing_prompts)) if do_classifier_free_guidance else latents
|
497 |
+
)
|
498 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
499 |
+
|
500 |
+
# predict the noise residual
|
501 |
+
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
|
502 |
+
|
503 |
+
# perform guidance
|
504 |
+
if do_classifier_free_guidance:
|
505 |
+
noise_pred_out = noise_pred.chunk(2 + enabled_editing_prompts) # [b,4, 64, 64]
|
506 |
+
noise_pred_uncond, noise_pred_text = noise_pred_out[0], noise_pred_out[1]
|
507 |
+
noise_pred_edit_concepts = noise_pred_out[2:]
|
508 |
+
|
509 |
+
# default text guidance
|
510 |
+
noise_guidance = guidance_scale * (noise_pred_text - noise_pred_uncond)
|
511 |
+
# noise_guidance = (noise_pred_text - noise_pred_edit_concepts[0])
|
512 |
+
|
513 |
+
if self.uncond_estimates is None:
|
514 |
+
self.uncond_estimates = torch.zeros((num_inference_steps + 1, *noise_pred_uncond.shape))
|
515 |
+
self.uncond_estimates[i] = noise_pred_uncond.detach().cpu()
|
516 |
+
|
517 |
+
if self.text_estimates is None:
|
518 |
+
self.text_estimates = torch.zeros((num_inference_steps + 1, *noise_pred_text.shape))
|
519 |
+
self.text_estimates[i] = noise_pred_text.detach().cpu()
|
520 |
+
|
521 |
+
if self.edit_estimates is None and enable_edit_guidance:
|
522 |
+
self.edit_estimates = torch.zeros(
|
523 |
+
(num_inference_steps + 1, len(noise_pred_edit_concepts), *noise_pred_edit_concepts[0].shape)
|
524 |
+
)
|
525 |
+
|
526 |
+
if self.sem_guidance is None:
|
527 |
+
self.sem_guidance = torch.zeros((num_inference_steps + 1, *noise_pred_text.shape))
|
528 |
+
|
529 |
+
if edit_momentum is None:
|
530 |
+
edit_momentum = torch.zeros_like(noise_guidance)
|
531 |
+
|
532 |
+
if enable_edit_guidance:
|
533 |
+
concept_weights = torch.zeros(
|
534 |
+
(len(noise_pred_edit_concepts), noise_guidance.shape[0]),
|
535 |
+
device=self.device,
|
536 |
+
dtype=noise_guidance.dtype,
|
537 |
+
)
|
538 |
+
noise_guidance_edit = torch.zeros(
|
539 |
+
(len(noise_pred_edit_concepts), *noise_guidance.shape),
|
540 |
+
device=self.device,
|
541 |
+
dtype=noise_guidance.dtype,
|
542 |
+
)
|
543 |
+
# noise_guidance_edit = torch.zeros_like(noise_guidance)
|
544 |
+
warmup_inds = []
|
545 |
+
for c, noise_pred_edit_concept in enumerate(noise_pred_edit_concepts):
|
546 |
+
self.edit_estimates[i, c] = noise_pred_edit_concept
|
547 |
+
if isinstance(edit_guidance_scale, list):
|
548 |
+
edit_guidance_scale_c = edit_guidance_scale[c]
|
549 |
+
else:
|
550 |
+
edit_guidance_scale_c = edit_guidance_scale
|
551 |
+
|
552 |
+
if isinstance(edit_threshold, list):
|
553 |
+
edit_threshold_c = edit_threshold[c]
|
554 |
+
else:
|
555 |
+
edit_threshold_c = edit_threshold
|
556 |
+
if isinstance(reverse_editing_direction, list):
|
557 |
+
reverse_editing_direction_c = reverse_editing_direction[c]
|
558 |
+
else:
|
559 |
+
reverse_editing_direction_c = reverse_editing_direction
|
560 |
+
if edit_weights:
|
561 |
+
edit_weight_c = edit_weights[c]
|
562 |
+
else:
|
563 |
+
edit_weight_c = 1.0
|
564 |
+
if isinstance(edit_warmup_steps, list):
|
565 |
+
edit_warmup_steps_c = edit_warmup_steps[c]
|
566 |
+
else:
|
567 |
+
edit_warmup_steps_c = edit_warmup_steps
|
568 |
+
|
569 |
+
if isinstance(edit_cooldown_steps, list):
|
570 |
+
edit_cooldown_steps_c = edit_cooldown_steps[c]
|
571 |
+
elif edit_cooldown_steps is None:
|
572 |
+
edit_cooldown_steps_c = i + 1
|
573 |
+
else:
|
574 |
+
edit_cooldown_steps_c = edit_cooldown_steps
|
575 |
+
if i >= edit_warmup_steps_c:
|
576 |
+
warmup_inds.append(c)
|
577 |
+
if i >= edit_cooldown_steps_c:
|
578 |
+
noise_guidance_edit[c, :, :, :, :] = torch.zeros_like(noise_pred_edit_concept)
|
579 |
+
continue
|
580 |
+
|
581 |
+
noise_guidance_edit_tmp = noise_pred_edit_concept - noise_pred_uncond
|
582 |
+
# tmp_weights = (noise_pred_text - noise_pred_edit_concept).sum(dim=(1, 2, 3))
|
583 |
+
tmp_weights = (noise_guidance - noise_pred_edit_concept).sum(dim=(1, 2, 3))
|
584 |
+
|
585 |
+
tmp_weights = torch.full_like(tmp_weights, edit_weight_c) # * (1 / enabled_editing_prompts)
|
586 |
+
if reverse_editing_direction_c:
|
587 |
+
noise_guidance_edit_tmp = noise_guidance_edit_tmp * -1
|
588 |
+
concept_weights[c, :] = tmp_weights
|
589 |
+
|
590 |
+
noise_guidance_edit_tmp = noise_guidance_edit_tmp * edit_guidance_scale_c
|
591 |
+
|
592 |
+
# torch.quantile function expects float32
|
593 |
+
if noise_guidance_edit_tmp.dtype == torch.float32:
|
594 |
+
tmp = torch.quantile(
|
595 |
+
torch.abs(noise_guidance_edit_tmp).flatten(start_dim=2),
|
596 |
+
edit_threshold_c,
|
597 |
+
dim=2,
|
598 |
+
keepdim=False,
|
599 |
+
)
|
600 |
+
else:
|
601 |
+
tmp = torch.quantile(
|
602 |
+
torch.abs(noise_guidance_edit_tmp).flatten(start_dim=2).to(torch.float32),
|
603 |
+
edit_threshold_c,
|
604 |
+
dim=2,
|
605 |
+
keepdim=False,
|
606 |
+
).to(noise_guidance_edit_tmp.dtype)
|
607 |
+
|
608 |
+
noise_guidance_edit_tmp = torch.where(
|
609 |
+
torch.abs(noise_guidance_edit_tmp) >= tmp[:, :, None, None],
|
610 |
+
noise_guidance_edit_tmp,
|
611 |
+
torch.zeros_like(noise_guidance_edit_tmp),
|
612 |
+
)
|
613 |
+
noise_guidance_edit[c, :, :, :, :] = noise_guidance_edit_tmp
|
614 |
+
|
615 |
+
# noise_guidance_edit = noise_guidance_edit + noise_guidance_edit_tmp
|
616 |
+
|
617 |
+
warmup_inds = torch.tensor(warmup_inds).to(self.device)
|
618 |
+
if len(noise_pred_edit_concepts) > warmup_inds.shape[0] > 0:
|
619 |
+
concept_weights = concept_weights.to("cpu") # Offload to cpu
|
620 |
+
noise_guidance_edit = noise_guidance_edit.to("cpu")
|
621 |
+
|
622 |
+
concept_weights_tmp = torch.index_select(concept_weights.to(self.device), 0, warmup_inds)
|
623 |
+
concept_weights_tmp = torch.where(
|
624 |
+
concept_weights_tmp < 0, torch.zeros_like(concept_weights_tmp), concept_weights_tmp
|
625 |
+
)
|
626 |
+
concept_weights_tmp = concept_weights_tmp / concept_weights_tmp.sum(dim=0)
|
627 |
+
# concept_weights_tmp = torch.nan_to_num(concept_weights_tmp)
|
628 |
+
|
629 |
+
noise_guidance_edit_tmp = torch.index_select(
|
630 |
+
noise_guidance_edit.to(self.device), 0, warmup_inds
|
631 |
+
)
|
632 |
+
noise_guidance_edit_tmp = torch.einsum(
|
633 |
+
"cb,cbijk->bijk", concept_weights_tmp, noise_guidance_edit_tmp
|
634 |
+
)
|
635 |
+
noise_guidance_edit_tmp = noise_guidance_edit_tmp
|
636 |
+
noise_guidance = noise_guidance + noise_guidance_edit_tmp
|
637 |
+
|
638 |
+
self.sem_guidance[i] = noise_guidance_edit_tmp.detach().cpu()
|
639 |
+
|
640 |
+
del noise_guidance_edit_tmp
|
641 |
+
del concept_weights_tmp
|
642 |
+
concept_weights = concept_weights.to(self.device)
|
643 |
+
noise_guidance_edit = noise_guidance_edit.to(self.device)
|
644 |
+
|
645 |
+
concept_weights = torch.where(
|
646 |
+
concept_weights < 0, torch.zeros_like(concept_weights), concept_weights
|
647 |
+
)
|
648 |
+
|
649 |
+
concept_weights = torch.nan_to_num(concept_weights)
|
650 |
+
|
651 |
+
noise_guidance_edit = torch.einsum("cb,cbijk->bijk", concept_weights, noise_guidance_edit)
|
652 |
+
|
653 |
+
noise_guidance_edit = noise_guidance_edit + edit_momentum_scale * edit_momentum
|
654 |
+
|
655 |
+
edit_momentum = edit_mom_beta * edit_momentum + (1 - edit_mom_beta) * noise_guidance_edit
|
656 |
+
|
657 |
+
if warmup_inds.shape[0] == len(noise_pred_edit_concepts):
|
658 |
+
noise_guidance = noise_guidance + noise_guidance_edit
|
659 |
+
self.sem_guidance[i] = noise_guidance_edit.detach().cpu()
|
660 |
+
|
661 |
+
if sem_guidance is not None:
|
662 |
+
edit_guidance = sem_guidance[i].to(self.device)
|
663 |
+
noise_guidance = noise_guidance + edit_guidance
|
664 |
+
|
665 |
+
noise_pred = noise_pred_uncond + noise_guidance
|
666 |
+
## ddpm ###########################################################
|
667 |
+
if use_ddpm:
|
668 |
+
|
669 |
+
idx = t_to_idx[int(t)]
|
670 |
+
z = zs[idx] if not zs is None else None
|
671 |
+
|
672 |
+
# 1. get previous step value (=t-1)
|
673 |
+
prev_timestep = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
|
674 |
+
# 2. compute alphas, betas
|
675 |
+
alpha_prod_t = self.scheduler.alphas_cumprod[t]
|
676 |
+
alpha_prod_t_prev = self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod
|
677 |
+
beta_prod_t = 1 - alpha_prod_t
|
678 |
+
|
679 |
+
# 3. compute predicted original sample from predicted noise also called
|
680 |
+
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
681 |
+
pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5)
|
682 |
+
|
683 |
+
|
684 |
+
# 5. compute variance: "sigma_t(η)" -> see formula (16)
|
685 |
+
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
|
686 |
+
# variance = self.scheduler._get_variance(timestep, prev_timestep)
|
687 |
+
# variance = get_variance(model, t) #, prev_timestep)
|
688 |
+
prev_timestep = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
|
689 |
+
alpha_prod_t = self.scheduler.alphas_cumprod[t]
|
690 |
+
alpha_prod_t_prev = self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod
|
691 |
+
beta_prod_t = 1 - alpha_prod_t
|
692 |
+
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
693 |
+
variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
|
694 |
+
|
695 |
+
|
696 |
+
|
697 |
+
std_dev_t = eta * variance ** (0.5)
|
698 |
+
# Take care of asymetric reverse process (asyrp)
|
699 |
+
noise_pred_direction = noise_pred
|
700 |
+
|
701 |
+
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
702 |
+
# pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output_direction
|
703 |
+
pred_sample_direction = (1 - alpha_prod_t_prev - eta * variance) ** (0.5) * noise_pred_direction
|
704 |
+
|
705 |
+
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
706 |
+
prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
|
707 |
+
# 8. Add noice if eta > 0
|
708 |
+
if eta > 0:
|
709 |
+
if z is None:
|
710 |
+
z = torch.randn(noise_pred.shape, device=self.device)
|
711 |
+
sigma_z = eta * variance ** (0.5) * z
|
712 |
+
latents = prev_sample + sigma_z
|
713 |
+
|
714 |
+
## ddpm ##########################################################
|
715 |
+
# compute the previous noisy sample x_t -> x_t-1
|
716 |
+
if not use_ddpm:
|
717 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
718 |
+
|
719 |
+
# call the callback, if provided
|
720 |
+
if callback is not None and i % callback_steps == 0:
|
721 |
+
callback(i, t, latents)
|
722 |
+
|
723 |
+
|
724 |
+
# 8. Post-processing
|
725 |
+
image = self.decode_latents(latents)
|
726 |
+
|
727 |
+
# 9. Run safety checker
|
728 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, text_embeddings.dtype)
|
729 |
+
|
730 |
+
# 10. Convert to PIL
|
731 |
+
if output_type == "pil":
|
732 |
+
image = self.numpy_to_pil(image)
|
733 |
+
|
734 |
+
if not return_dict:
|
735 |
+
return (image, has_nsfw_concept)
|
736 |
+
|
737 |
+
#return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
738 |
+
|
739 |
+
# 8. Post-processing
|
740 |
+
if not output_type == "latent":
|
741 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
742 |
+
image, has_nsfw_concept = self.run_safety_checker(image, self.device, text_embeddings.dtype)
|
743 |
+
else:
|
744 |
+
image = latents
|
745 |
+
has_nsfw_concept = None
|
746 |
+
|
747 |
+
if has_nsfw_concept is None:
|
748 |
+
do_denormalize = [True] * image.shape[0]
|
749 |
+
else:
|
750 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
751 |
+
|
752 |
+
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
753 |
+
|
754 |
+
if not return_dict:
|
755 |
+
return (image, has_nsfw_concept)
|
756 |
+
|
757 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|