import PIL from PIL import Image, ImageDraw ,ImageFont from matplotlib import pyplot as plt import torchvision.transforms as T import os import torch import yaml def show_torch_img(img): img = to_np_image(img) plt.imshow(img) plt.axis("off") def to_np_image(all_images): all_images = (all_images.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8).cpu().numpy()[0] return all_images def tensor_to_pil(tensor_imgs): if type(tensor_imgs) == list: tensor_imgs = torch.cat(tensor_imgs) tensor_imgs = (tensor_imgs / 2 + 0.5).clamp(0, 1) to_pil = T.ToPILImage() pil_imgs = [to_pil(img) for img in tensor_imgs] return pil_imgs def pil_to_tensor(pil_imgs): to_torch = T.ToTensor() if type(pil_imgs) == PIL.Image.Image: tensor_imgs = to_torch(pil_imgs).unsqueeze(0)*2-1 elif type(pil_imgs) == list: tensor_imgs = torch.cat([to_torch(pil_imgs).unsqueeze(0)*2-1 for img in pil_imgs]).to(device) else: raise Exception("Input need to be PIL.Image or list of PIL.Image") return tensor_imgs ## TODO implement this # n = 10 # num_rows = 4 # num_col = n // num_rows # num_col = num_col + 1 if n % num_rows else num_col # num_col def add_margin(pil_img, top = 0, right = 0, bottom = 0, left = 0, color = (255,255,255)): width, height = pil_img.size new_width = width + right + left new_height = height + top + bottom result = Image.new(pil_img.mode, (new_width, new_height), color) result.paste(pil_img, (left, top)) return result def image_grid(imgs, rows = 1, cols = None, size = None, titles = None, text_pos = (0, 0)): if type(imgs) == list and type(imgs[0]) == torch.Tensor: imgs = torch.cat(imgs) if type(imgs) == torch.Tensor: imgs = tensor_to_pil(imgs) if not size is None: imgs = [img.resize((size,size)) for img in imgs] if cols is None: cols = len(imgs) assert len(imgs) >= rows*cols top=20 w, h = imgs[0].size delta = 0 if len(imgs)> 1 and not imgs[1].size[1] == h: delta = top h = imgs[1].size[1] if not titles is None: font = ImageFont.truetype("/usr/share/fonts/truetype/freefont/FreeMono.ttf", size = 20, encoding="unic") h = top + h grid = Image.new('RGB', size=(cols*w, rows*h+delta)) for i, img in enumerate(imgs): if not titles is None: img = add_margin(img, top = top, bottom = 0,left=0) draw = ImageDraw.Draw(img) draw.text(text_pos, titles[i],(0,0,0), font = font) if not delta == 0 and i > 0: grid.paste(img, box=(i%cols*w, i//cols*h+delta)) else: grid.paste(img, box=(i%cols*w, i//cols*h)) return grid """ input_folder - dataset folder """ def load_dataset(input_folder): # full_file_names = glob.glob(input_folder) # class_names = [x[0] for x in os.walk(input_folder)] class_names = next(os.walk(input_folder))[1] class_names[:] = [d for d in class_names if not d[0] == '.'] file_names=[] for class_name in class_names: cur_path = os.path.join(input_folder, class_name) filenames = next(os.walk(cur_path), (None, None, []))[2] filenames = [f for f in filenames if not f[0] == '.'] file_names.append(filenames) return class_names, file_names def dataset_from_yaml(yaml_location): with open(yaml_location, 'r') as stream: data_loaded = yaml.safe_load(stream) return data_loaded