leditsplusplus / scheduling_dpmsolver_multistep_inject.py
Linoy Tsaban
Update scheduling_dpmsolver_multistep_inject.py
57b4fef
raw
history blame
35.2 kB
# Copyright 2023 TSAIL Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# DISCLAIMER: This file is strongly influenced by https://github.com/LuChengTHU/dpm-solver
import math
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
# from diffusers.utils import randn_tensor
from diffusers.utils.torch_utils import randn_tensor
from diffusers.schedulers.scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
(1-beta) over time from t = [0,1].
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
to that part of the diffusion process.
Args:
num_diffusion_timesteps (`int`): the number of betas to produce.
max_beta (`float`): the maximum beta to use; use values lower than 1 to
prevent singularities.
Returns:
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
"""
def alpha_bar(time_step):
return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2
betas = []
for i in range(num_diffusion_timesteps):
t1 = i / num_diffusion_timesteps
t2 = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
return torch.tensor(betas, dtype=torch.float32)
class DPMSolverMultistepSchedulerInject(SchedulerMixin, ConfigMixin):
"""
DPM-Solver (and the improved version DPM-Solver++) is a fast dedicated high-order solver for diffusion ODEs with
the convergence order guarantee. Empirically, sampling by DPM-Solver with only 20 steps can generate high-quality
samples, and it can generate quite good samples even in only 10 steps.
For more details, see the original paper: https://arxiv.org/abs/2206.00927 and https://arxiv.org/abs/2211.01095
Currently, we support the multistep DPM-Solver for both noise prediction models and data prediction models. We
recommend to use `solver_order=2` for guided sampling, and `solver_order=3` for unconditional sampling.
We also support the "dynamic thresholding" method in Imagen (https://arxiv.org/abs/2205.11487). For pixel-space
diffusion models, you can set both `algorithm_type="dpmsolver++"` and `thresholding=True` to use the dynamic
thresholding. Note that the thresholding method is unsuitable for latent-space diffusion models (such as
stable-diffusion).
We also support the SDE variant of DPM-Solver and DPM-Solver++, which is a fast SDE solver for the reverse
diffusion SDE. Currently we only support the first-order and second-order solvers. We recommend using the
second-order `sde-dpmsolver++`.
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
[`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
[`~SchedulerMixin.from_pretrained`] functions.
Args:
num_train_timesteps (`int`): number of diffusion steps used to train the model.
beta_start (`float`): the starting `beta` value of inference.
beta_end (`float`): the final `beta` value.
beta_schedule (`str`):
the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
trained_betas (`np.ndarray`, optional):
option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
solver_order (`int`, default `2`):
the order of DPM-Solver; can be `1` or `2` or `3`. We recommend to use `solver_order=2` for guided
sampling, and `solver_order=3` for unconditional sampling.
prediction_type (`str`, default `epsilon`, optional):
prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
https://imagen.research.google/video/paper.pdf)
thresholding (`bool`, default `False`):
whether to use the "dynamic thresholding" method (introduced by Imagen, https://arxiv.org/abs/2205.11487).
For pixel-space diffusion models, you can set both `algorithm_type=dpmsolver++` and `thresholding=True` to
use the dynamic thresholding. Note that the thresholding method is unsuitable for latent-space diffusion
models (such as stable-diffusion).
dynamic_thresholding_ratio (`float`, default `0.995`):
the ratio for the dynamic thresholding method. Default is `0.995`, the same as Imagen
(https://arxiv.org/abs/2205.11487).
sample_max_value (`float`, default `1.0`):
the threshold value for dynamic thresholding. Valid only when `thresholding=True` and
`algorithm_type="dpmsolver++`.
algorithm_type (`str`, default `dpmsolver++`):
the algorithm type for the solver. Either `dpmsolver` or `dpmsolver++` or `sde-dpmsolver` or
`sde-dpmsolver++`. The `dpmsolver` type implements the algorithms in https://arxiv.org/abs/2206.00927, and
the `dpmsolver++` type implements the algorithms in https://arxiv.org/abs/2211.01095. We recommend to use
`dpmsolver++` or `sde-dpmsolver++` with `solver_order=2` for guided sampling (e.g. stable-diffusion).
solver_type (`str`, default `midpoint`):
the solver type for the second-order solver. Either `midpoint` or `heun`. The solver type slightly affects
the sample quality, especially for small number of steps. We empirically find that `midpoint` solvers are
slightly better, so we recommend to use the `midpoint` type.
lower_order_final (`bool`, default `True`):
whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. We empirically
find this trick can stabilize the sampling of DPM-Solver for steps < 15, especially for steps <= 10.
use_karras_sigmas (`bool`, *optional*, defaults to `False`):
This parameter controls whether to use Karras sigmas (Karras et al. (2022) scheme) for step sizes in the
noise schedule during the sampling process. If True, the sigmas will be determined according to a sequence
of noise levels {σi} as defined in Equation (5) of the paper https://arxiv.org/pdf/2206.00364.pdf.
lambda_min_clipped (`float`, default `-inf`):
the clipping threshold for the minimum value of lambda(t) for numerical stability. This is critical for
cosine (squaredcos_cap_v2) noise schedule.
variance_type (`str`, *optional*):
Set to "learned" or "learned_range" for diffusion models that predict variance. For example, OpenAI's
guided-diffusion (https://github.com/openai/guided-diffusion) predicts both mean and variance of the
Gaussian distribution in the model's output. DPM-Solver only needs the "mean" output because it is based on
diffusion ODEs. whether the model's output contains the predicted Gaussian variance. For example, OpenAI's
guided-diffusion (https://github.com/openai/guided-diffusion) predicts both mean and variance of the
Gaussian distribution in the model's output. DPM-Solver only needs the "mean" output because it is based on
diffusion ODEs.
"""
_compatibles = [e.name for e in KarrasDiffusionSchedulers]
order = 1
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
beta_start: float = 0.0001,
beta_end: float = 0.02,
beta_schedule: str = "linear",
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
solver_order: int = 2,
prediction_type: str = "epsilon",
thresholding: bool = False,
dynamic_thresholding_ratio: float = 0.995,
sample_max_value: float = 1.0,
algorithm_type: str = "dpmsolver++",
solver_type: str = "midpoint",
lower_order_final: bool = True,
use_karras_sigmas: Optional[bool] = False,
lambda_min_clipped: float = -float("inf"),
variance_type: Optional[str] = None,
):
if trained_betas is not None:
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
elif beta_schedule == "linear":
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = (
torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
self.betas = betas_for_alpha_bar(num_train_timesteps)
else:
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
self.alphas = 1.0 - self.betas
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
# Currently we only support VP-type noise schedule
self.alpha_t = torch.sqrt(self.alphas_cumprod)
self.sigma_t = torch.sqrt(1 - self.alphas_cumprod)
self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t)
# standard deviation of the initial noise distribution
self.init_noise_sigma = 1.0
# settings for DPM-Solver
if algorithm_type not in ["dpmsolver", "dpmsolver++", "sde-dpmsolver", "sde-dpmsolver++"]:
if algorithm_type == "deis":
self.register_to_config(algorithm_type="dpmsolver++")
else:
raise NotImplementedError(f"{algorithm_type} does is not implemented for {self.__class__}")
if solver_type not in ["midpoint", "heun"]:
if solver_type in ["logrho", "bh1", "bh2"]:
self.register_to_config(solver_type="midpoint")
else:
raise NotImplementedError(f"{solver_type} does is not implemented for {self.__class__}")
# setable values
self.num_inference_steps = None
timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy()
self.timesteps = torch.from_numpy(timesteps)
self.model_outputs = [None] * solver_order
self.lower_order_nums = 0
self.use_karras_sigmas = use_karras_sigmas
def set_timesteps(self, num_inference_steps: int = None, device: Union[str, torch.device] = None):
"""
Sets the timesteps used for the diffusion chain. Supporting function to be run before inference.
Args:
num_inference_steps (`int`):
the number of diffusion steps used when generating samples with a pre-trained model.
device (`str` or `torch.device`, optional):
the device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
"""
# Clipping the minimum of all lambda(t) for numerical stability.
# This is critical for cosine (squaredcos_cap_v2) noise schedule.
clipped_idx = torch.searchsorted(torch.flip(self.lambda_t, [0]), self.config.lambda_min_clipped)
timesteps = (
np.linspace(0, self.config.num_train_timesteps - 1 - clipped_idx, num_inference_steps + 1)
.round()[::-1][:-1]
.copy()
.astype(np.int64)
)
if self.use_karras_sigmas:
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
log_sigmas = np.log(sigmas)
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
timesteps = np.flip(timesteps).copy().astype(np.int64)
# when num_inference_steps == num_train_timesteps, we can end up with
# duplicates in timesteps.
_, unique_indices = np.unique(timesteps, return_index=True)
timesteps = timesteps[np.sort(unique_indices)]
self.timesteps = torch.from_numpy(timesteps).to(device)
self.num_inference_steps = len(timesteps)
self.model_outputs = [
None,
] * self.config.solver_order
self.lower_order_nums = 0
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
"""
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
pixels from saturation at each step. We find that dynamic thresholding results in significantly better
photorealism as well as better image-text alignment, especially when using very large guidance weights."
https://arxiv.org/abs/2205.11487
"""
dtype = sample.dtype
batch_size, channels, height, width = sample.shape
if dtype not in (torch.float32, torch.float64):
sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half
# Flatten sample for doing quantile calculation along each image
sample = sample.reshape(batch_size, channels * height * width)
abs_sample = sample.abs() # "a certain percentile absolute pixel value"
s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
s = torch.clamp(
s, min=1, max=self.config.sample_max_value
) # When clamped to min=1, equivalent to standard clipping to [-1, 1]
s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0
sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s"
sample = sample.reshape(batch_size, channels, height, width)
sample = sample.to(dtype)
return sample
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
def _sigma_to_t(self, sigma, log_sigmas):
# get log sigma
log_sigma = np.log(sigma)
# get distribution
dists = log_sigma - log_sigmas[:, np.newaxis]
# get sigmas range
low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
high_idx = low_idx + 1
low = log_sigmas[low_idx]
high = log_sigmas[high_idx]
# interpolate sigmas
w = (low - log_sigma) / (low - high)
w = np.clip(w, 0, 1)
# transform interpolation to time range
t = (1 - w) * low_idx + w * high_idx
t = t.reshape(sigma.shape)
return t
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
def _convert_to_karras(self, in_sigmas: torch.FloatTensor, num_inference_steps) -> torch.FloatTensor:
"""Constructs the noise schedule of Karras et al. (2022)."""
sigma_min: float = in_sigmas[-1].item()
sigma_max: float = in_sigmas[0].item()
rho = 7.0 # 7.0 is the value used in the paper
ramp = np.linspace(0, 1, num_inference_steps)
min_inv_rho = sigma_min ** (1 / rho)
max_inv_rho = sigma_max ** (1 / rho)
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
return sigmas
def convert_model_output(
self, model_output: torch.FloatTensor, timestep: int, sample: torch.FloatTensor
) -> torch.FloatTensor:
"""
Convert the model output to the corresponding type that the algorithm (DPM-Solver / DPM-Solver++) needs.
DPM-Solver is designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to
discretize an integral of the data prediction model. So we need to first convert the model output to the
corresponding type to match the algorithm.
Note that the algorithm type and the model type is decoupled. That is to say, we can use either DPM-Solver or
DPM-Solver++ for both noise prediction model and data prediction model.
Args:
model_output (`torch.FloatTensor`): direct output from learned diffusion model.
timestep (`int`): current discrete timestep in the diffusion chain.
sample (`torch.FloatTensor`):
current instance of sample being created by diffusion process.
Returns:
`torch.FloatTensor`: the converted model output.
"""
# DPM-Solver++ needs to solve an integral of the data prediction model.
if self.config.algorithm_type in ["dpmsolver++", "sde-dpmsolver++"]:
if self.config.prediction_type == "epsilon":
# DPM-Solver and DPM-Solver++ only need the "mean" output.
if self.config.variance_type in ["learned", "learned_range"]:
model_output = model_output[:, :3]
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
x0_pred = (sample - sigma_t * model_output) / alpha_t
elif self.config.prediction_type == "sample":
x0_pred = model_output
elif self.config.prediction_type == "v_prediction":
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
x0_pred = alpha_t * sample - sigma_t * model_output
else:
raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
" `v_prediction` for the DPMSolverMultistepScheduler."
)
if self.config.thresholding:
x0_pred = self._threshold_sample(x0_pred)
return x0_pred
# DPM-Solver needs to solve an integral of the noise prediction model.
elif self.config.algorithm_type in ["dpmsolver", "sde-dpmsolver"]:
if self.config.prediction_type == "epsilon":
# DPM-Solver and DPM-Solver++ only need the "mean" output.
if self.config.variance_type in ["learned", "learned_range"]:
epsilon = model_output[:, :3]
else:
epsilon = model_output
elif self.config.prediction_type == "sample":
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
epsilon = (sample - alpha_t * model_output) / sigma_t
elif self.config.prediction_type == "v_prediction":
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
epsilon = alpha_t * model_output + sigma_t * sample
else:
raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
" `v_prediction` for the DPMSolverMultistepScheduler."
)
if self.config.thresholding:
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
x0_pred = (sample - sigma_t * epsilon) / alpha_t
x0_pred = self._threshold_sample(x0_pred)
epsilon = (sample - alpha_t * x0_pred) / sigma_t
return epsilon
def dpm_solver_first_order_update(
self,
model_output: torch.FloatTensor,
timestep: int,
prev_timestep: int,
sample: torch.FloatTensor,
noise: Optional[torch.FloatTensor] = None,
) -> torch.FloatTensor:
"""
One step for the first-order DPM-Solver (equivalent to DDIM).
See https://arxiv.org/abs/2206.00927 for the detailed derivation.
Args:
model_output (`torch.FloatTensor`): direct output from learned diffusion model.
timestep (`int`): current discrete timestep in the diffusion chain.
prev_timestep (`int`): previous discrete timestep in the diffusion chain.
sample (`torch.FloatTensor`):
current instance of sample being created by diffusion process.
Returns:
`torch.FloatTensor`: the sample tensor at the previous timestep.
"""
lambda_t, lambda_s = self.lambda_t[prev_timestep], self.lambda_t[timestep]
alpha_t, alpha_s = self.alpha_t[prev_timestep], self.alpha_t[timestep]
sigma_t, sigma_s = self.sigma_t[prev_timestep], self.sigma_t[timestep]
h = lambda_t - lambda_s
if self.config.algorithm_type == "dpmsolver++":
x_t = (sigma_t / sigma_s) * sample - (alpha_t * (torch.exp(-h) - 1.0)) * model_output
elif self.config.algorithm_type == "dpmsolver":
x_t = (alpha_t / alpha_s) * sample - (sigma_t * (torch.exp(h) - 1.0)) * model_output
elif self.config.algorithm_type == "sde-dpmsolver++":
assert noise is not None
x_t = (
(sigma_t / sigma_s * torch.exp(-h)) * sample
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
)
elif self.config.algorithm_type == "sde-dpmsolver":
assert noise is not None
x_t = (
(alpha_t / alpha_s) * sample
- 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * model_output
+ sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise
)
return x_t
def multistep_dpm_solver_second_order_update(
self,
model_output_list: List[torch.FloatTensor],
timestep_list: List[int],
prev_timestep: int,
sample: torch.FloatTensor,
noise: Optional[torch.FloatTensor] = None,
) -> torch.FloatTensor:
"""
One step for the second-order multistep DPM-Solver.
Args:
model_output_list (`List[torch.FloatTensor]`):
direct outputs from learned diffusion model at current and latter timesteps.
timestep (`int`): current and latter discrete timestep in the diffusion chain.
prev_timestep (`int`): previous discrete timestep in the diffusion chain.
sample (`torch.FloatTensor`):
current instance of sample being created by diffusion process.
Returns:
`torch.FloatTensor`: the sample tensor at the previous timestep.
"""
t, s0, s1 = prev_timestep, timestep_list[-1], timestep_list[-2]
m0, m1 = model_output_list[-1], model_output_list[-2]
lambda_t, lambda_s0, lambda_s1 = self.lambda_t[t], self.lambda_t[s0], self.lambda_t[s1]
alpha_t, alpha_s0 = self.alpha_t[t], self.alpha_t[s0]
sigma_t, sigma_s0 = self.sigma_t[t], self.sigma_t[s0]
h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1
r0 = h_0 / h
D0, D1 = m0, (1.0 / r0) * (m0 - m1)
if self.config.algorithm_type == "dpmsolver++":
# See https://arxiv.org/abs/2211.01095 for detailed derivations
if self.config.solver_type == "midpoint":
x_t = (
(sigma_t / sigma_s0) * sample
- (alpha_t * (torch.exp(-h) - 1.0)) * D0
- 0.5 * (alpha_t * (torch.exp(-h) - 1.0)) * D1
)
elif self.config.solver_type == "heun":
x_t = (
(sigma_t / sigma_s0) * sample
- (alpha_t * (torch.exp(-h) - 1.0)) * D0
+ (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1
)
elif self.config.algorithm_type == "dpmsolver":
# See https://arxiv.org/abs/2206.00927 for detailed derivations
if self.config.solver_type == "midpoint":
x_t = (
(alpha_t / alpha_s0) * sample
- (sigma_t * (torch.exp(h) - 1.0)) * D0
- 0.5 * (sigma_t * (torch.exp(h) - 1.0)) * D1
)
elif self.config.solver_type == "heun":
x_t = (
(alpha_t / alpha_s0) * sample
- (sigma_t * (torch.exp(h) - 1.0)) * D0
- (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
)
elif self.config.algorithm_type == "sde-dpmsolver++":
assert noise is not None
if self.config.solver_type == "midpoint":
x_t = (
(sigma_t / sigma_s0 * torch.exp(-h)) * sample
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
+ 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
)
elif self.config.solver_type == "heun":
x_t = (
(sigma_t / sigma_s0 * torch.exp(-h)) * sample
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
+ (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
)
elif self.config.algorithm_type == "sde-dpmsolver":
assert noise is not None
if self.config.solver_type == "midpoint":
x_t = (
(alpha_t / alpha_s0) * sample
- 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * D0
- (sigma_t * (torch.exp(h) - 1.0)) * D1
+ sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise
)
elif self.config.solver_type == "heun":
x_t = (
(alpha_t / alpha_s0) * sample
- 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * D0
- 2.0 * (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
+ sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise
)
return x_t
def multistep_dpm_solver_third_order_update(
self,
model_output_list: List[torch.FloatTensor],
timestep_list: List[int],
prev_timestep: int,
sample: torch.FloatTensor,
) -> torch.FloatTensor:
"""
One step for the third-order multistep DPM-Solver.
Args:
model_output_list (`List[torch.FloatTensor]`):
direct outputs from learned diffusion model at current and latter timesteps.
timestep (`int`): current and latter discrete timestep in the diffusion chain.
prev_timestep (`int`): previous discrete timestep in the diffusion chain.
sample (`torch.FloatTensor`):
current instance of sample being created by diffusion process.
Returns:
`torch.FloatTensor`: the sample tensor at the previous timestep.
"""
t, s0, s1, s2 = prev_timestep, timestep_list[-1], timestep_list[-2], timestep_list[-3]
m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3]
lambda_t, lambda_s0, lambda_s1, lambda_s2 = (
self.lambda_t[t],
self.lambda_t[s0],
self.lambda_t[s1],
self.lambda_t[s2],
)
alpha_t, alpha_s0 = self.alpha_t[t], self.alpha_t[s0]
sigma_t, sigma_s0 = self.sigma_t[t], self.sigma_t[s0]
h, h_0, h_1 = lambda_t - lambda_s0, lambda_s0 - lambda_s1, lambda_s1 - lambda_s2
r0, r1 = h_0 / h, h_1 / h
D0 = m0
D1_0, D1_1 = (1.0 / r0) * (m0 - m1), (1.0 / r1) * (m1 - m2)
D1 = D1_0 + (r0 / (r0 + r1)) * (D1_0 - D1_1)
D2 = (1.0 / (r0 + r1)) * (D1_0 - D1_1)
if self.config.algorithm_type == "dpmsolver++":
# See https://arxiv.org/abs/2206.00927 for detailed derivations
x_t = (
(sigma_t / sigma_s0) * sample
- (alpha_t * (torch.exp(-h) - 1.0)) * D0
+ (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1
- (alpha_t * ((torch.exp(-h) - 1.0 + h) / h**2 - 0.5)) * D2
)
elif self.config.algorithm_type == "dpmsolver":
# See https://arxiv.org/abs/2206.00927 for detailed derivations
x_t = (
(alpha_t / alpha_s0) * sample
- (sigma_t * (torch.exp(h) - 1.0)) * D0
- (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
- (sigma_t * ((torch.exp(h) - 1.0 - h) / h**2 - 0.5)) * D2
)
return x_t
def step(
self,
model_output: torch.FloatTensor,
timestep: int,
sample: torch.FloatTensor,
generator=None,
return_dict: bool = True,
variance_noise: Optional[torch.FloatTensor] = None,
) -> Union[SchedulerOutput, Tuple]:
"""
Step function propagating the sample with the multistep DPM-Solver.
Args:
model_output (`torch.FloatTensor`): direct output from learned diffusion model.
timestep (`int`): current discrete timestep in the diffusion chain.
sample (`torch.FloatTensor`):
current instance of sample being created by diffusion process.
return_dict (`bool`): option for returning tuple rather than SchedulerOutput class
Returns:
[`~scheduling_utils.SchedulerOutput`] or `tuple`: [`~scheduling_utils.SchedulerOutput`] if `return_dict` is
True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
"""
if self.num_inference_steps is None:
raise ValueError(
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
)
if isinstance(timestep, torch.Tensor):
timestep = timestep.to(self.timesteps.device)
step_index = (self.timesteps == timestep).nonzero()
if len(step_index) == 0:
step_index = len(self.timesteps) - 1
else:
step_index = step_index.item()
prev_timestep = 0 if step_index == len(self.timesteps) - 1 else self.timesteps[step_index + 1]
lower_order_final = (
(step_index == len(self.timesteps) - 1) and self.config.lower_order_final and len(self.timesteps) < 15
)
lower_order_second = (
(step_index == len(self.timesteps) - 2) and self.config.lower_order_final and len(self.timesteps) < 15
)
model_output = self.convert_model_output(model_output, timestep, sample)
for i in range(self.config.solver_order - 1):
self.model_outputs[i] = self.model_outputs[i + 1]
self.model_outputs[-1] = model_output
if self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"] and variance_noise is None:
noise = randn_tensor(
model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype
)
elif self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"]:
noise = variance_noise
else:
noise = None
if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final:
prev_sample = self.dpm_solver_first_order_update(
model_output, timestep, prev_timestep, sample, noise=noise
)
elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second:
timestep_list = [self.timesteps[step_index - 1], timestep]
prev_sample = self.multistep_dpm_solver_second_order_update(
self.model_outputs, timestep_list, prev_timestep, sample, noise=noise
)
else:
raise NotImplementedError()
if self.lower_order_nums < self.config.solver_order:
self.lower_order_nums += 1
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=prev_sample)
def scale_model_input(self, sample: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor:
"""
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
current timestep.
Args:
sample (`torch.FloatTensor`): input sample
Returns:
`torch.FloatTensor`: scaled input sample
"""
return sample
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
def add_noise(
self,
original_samples: torch.FloatTensor,
noise: torch.FloatTensor,
timesteps: torch.IntTensor,
) -> torch.FloatTensor:
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
timesteps = timesteps.to(original_samples.device)
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
def __len__(self):
return self.config.num_train_timesteps