File size: 11,314 Bytes
df66f6e
2a5f9fb
 
df66f6e
2a5f9fb
5639a81
2a5f9fb
 
 
 
20b060e
 
2a5f9fb
71ecfbb
8aaf0e7
2a5f9fb
 
 
3dfaf22
 
 
 
2a5f9fb
3dfaf22
2a5f9fb
9d22eee
3dfaf22
9d22eee
3dfaf22
2a5f9fb
 
 
3dfaf22
9b2e755
90fa47e
 
d9f882d
0c7ef71
439afd4
359d8a9
71ecfbb
b234783
2a5f9fb
 
71ecfbb
3dfaf22
2a5f9fb
 
 
439afd4
 
2a5f9fb
0c7ef71
2a5f9fb
 
9d22eee
2a5f9fb
 
0c7ef71
2a5f9fb
 
 
 
 
9d22eee
2a5f9fb
 
 
9d22eee
002172c
2a5f9fb
 
 
71ecfbb
 
 
 
 
 
2a5f9fb
 
71ecfbb
2a5f9fb
 
 
 
 
 
 
 
71ecfbb
 
 
2a5f9fb
a69553b
 
 
 
 
 
 
 
 
 
 
2a5f9fb
a69553b
2a5f9fb
 
 
 
71ecfbb
2a5f9fb
 
 
002172c
2a5f9fb
 
 
3dfaf22
 
359d8a9
 
2a5f9fb
 
3dfaf22
 
9d22eee
2a5f9fb
 
 
 
9b2e755
9d22eee
2a5f9fb
b1a1395
9b2e755
d9f882d
b234783
9b2e755
d9f882d
2a5f9fb
 
0c7ef71
 
 
 
 
 
71ecfbb
 
 
 
 
 
0c7ef71
2a5f9fb
3dfaf22
5639a81
 
 
 
 
 
 
 
 
 
f976f1c
 
5639a81
2a5f9fb
 
9d22eee
2a5f9fb
0c7ef71
9d22eee
3dfaf22
439afd4
2a5f9fb
 
 
 
 
 
 
9b2e755
 
359d8a9
5639a81
 
2a5f9fb
 
 
5639a81
 
2a5f9fb
71ecfbb
 
 
2a5f9fb
 
 
3dfaf22
 
2a5f9fb
3dfaf22
2a5f9fb
 
 
 
 
 
 
 
 
 
 
8aaf0e7
2a5f9fb
 
 
 
 
 
0c7ef71
3dfaf22
 
2a5f9fb
 
 
 
 
 
 
 
 
 
 
 
 
3dfaf22
2a5f9fb
0c7ef71
 
 
2a5f9fb
3dfaf22
2a5f9fb
3dfaf22
 
9b2e755
 
2a5f9fb
 
 
 
 
 
 
 
 
 
 
8aaf0e7
d9f882d
 
79aba72
2a5f9fb
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import glob
import json
import math
import os
from dataclasses import dataclass
from typing import List

import dateutil
import numpy as np

from huggingface_hub import ModelCard

from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType, ORIGINAL_TASKS
from src.envs import GET_ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS, SHOW_INCOMPLETE_EVALS

@dataclass
class EvalResult:
    # Also see src.display.utils.AutoEvalColumn for what will be displayed.
    eval_name: str # org_model_precision (uid)
    full_model: str # org/model (path on hub)
    org: str 
    model: str
    revision: str # commit hash, "" if main
    results: dict
    precision: Precision = Precision.Unknown
    model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
    weight_type: WeightType = WeightType.Original # Original or Adapter
    architecture: str = "Unknown" # From config file
    license: str = "?"
    likes: int = 0
    num_params: int = 0
    date: str = "" # submission date of request file
    still_on_hub: bool = True
    is_merge: bool = False
    flagged: bool = False
    status: str = "FINISHED"
    tags: list = None
    json_filename: str = None
    eval_time: float = 0.0
    original_benchmark_average: float = None
    hidden: bool = False # Do not show on the leaderboard

    @classmethod
    def init_from_json_file(self, json_filepath, is_original=False):
        """Inits the result from the specific model result file"""
        with open(json_filepath) as fp:
            data = json.load(fp)

        json_filename = os.path.basename(json_filepath)

        # We manage the legacy config format
        config = data.get("config_general")

        # Precision
        precision = Precision.from_str(config.get("model_dtype"))

        # Get model and org
        org_and_model = config.get("model_name")
        org_and_model = org_and_model.split("/", 1)

        if len(org_and_model) == 1:
            org = None
            model = org_and_model[0]
            result_key = f"{model}_{precision.value.name}"
        else:
            org = org_and_model[0]
            model = org_and_model[1]
            result_key = f"{org}_{model}_{precision.value.name}"
        full_model = "/".join(org_and_model)

        # Extract results available in this file (some results are split in several files)
        results = {}
        tasks = [(task.value.benchmark, task.value.metric) for task in Tasks]
        if is_original:
            tasks = ORIGINAL_TASKS
        for task in tasks:
            benchmark, metric = task
            
            # We skip old mmlu entries
            wrong_mmlu_version = False
            if benchmark == "hendrycksTest":
                for mmlu_k in ["harness|hendrycksTest-abstract_algebra|5", "hendrycksTest-abstract_algebra"]:
                    if mmlu_k in data["versions"] and data["versions"][mmlu_k] == 0:
                        wrong_mmlu_version = True

            if wrong_mmlu_version:
                continue

            # Some truthfulQA values are NaNs
            if benchmark == "truthfulqa:mc" and "harness|truthfulqa:mc|0" in data["results"]:
                if math.isnan(float(data["results"]["harness|truthfulqa:mc|0"][metric])):
                    results[benchmark] = 0.0
                    continue

            def get_metric(v):
                res = v.get(metric, None)
                if res is None:
                    res = v.get(metric + ',all', None)
                if res is None:
                    res = v.get(metric + ',None', None)
                if res is None:
                    res = v.get('main_score', None)
                return res
                
            # We average all scores of a given metric (mostly for mmlu)
            accs = np.array([get_metric(v) for k, v in data["results"].items() if benchmark in k])
            if accs.size == 0 or any([acc is None for acc in accs]):
                continue

            mean_acc = np.mean(accs) * 100.0
            results[benchmark] = mean_acc

        return self(
            eval_name=result_key,
            full_model=full_model,
            org=org,
            model=model,
            results=results,
            precision=precision,  
            revision= config.get("model_sha", ""),
            json_filename=json_filename,
            eval_time=config.get("total_evaluation_time_seconds", 0.0)
        )

    def update_with_request_file(self, requests_path):
        """Finds the relevant request file for the current model and updates info with it"""
        request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)

        try:
            with open(request_file, "r") as f:
                request = json.load(f)
            self.model_type = ModelType.from_str(request.get("model_type", "Unknown"))
            self.weight_type = WeightType[request.get("weight_type", "Original")]
            self.num_params = request.get("params", 0)
            self.date = request.get("submitted_time", "")
            self.architecture = request.get("architectures", "Unknown")
            self.status = request.get("status", "FAILED")
            self.hidden = request.get("hidden", False)
        except Exception as e:
            self.status = "FAILED"
            print(f"Could not find request file for {self.org}/{self.model}")

    def update_with_dynamic_file_dict(self, file_dict):
        self.license = file_dict.get("license", "?")
        self.likes = file_dict.get("likes", 0)
        self.still_on_hub = file_dict["still_on_hub"]
        self.flagged = any("flagged" in tag for tag in file_dict["tags"])
        self.tags = file_dict["tags"]
        if 'original_llm_scores' in file_dict:
            if len(file_dict['original_llm_scores']) > 0:
                if self.precision.value.name in file_dict['original_llm_scores']:
                    self.original_benchmark_average = file_dict['original_llm_scores'][self.precision.value.name]
                else:
                    self.original_benchmark_average = max(list(file_dict['original_llm_scores'].values()))
        
    def to_dict(self):
        """Converts the Eval Result to a dict compatible with our dataframe display"""
        average = []
        npm = []
        for task in Tasks:
            if task.value.benchmark not in self.results:
                continue
            res = self.results[task.value.benchmark]
            if res is None or np.isnan(res) or not (isinstance(res, float) or isinstance(res, int)):
                continue
            average.append(res)
            npm.append((res-task.value.baseline)*100.0 / (100.0-task.value.baseline))
        average = round(sum(average)/len(average), 2)
        npm = round(sum(npm)/len(npm), 2)

        data_dict = {
            "eval_name": self.eval_name,  # not a column, just a save name,
            AutoEvalColumn.precision.name: self.precision.value.name,
            AutoEvalColumn.model_type.name: self.model_type.value.name,
            AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
            AutoEvalColumn.weight_type.name: self.weight_type.value.name,
            AutoEvalColumn.architecture.name: self.architecture,
            AutoEvalColumn.model.name: make_clickable_model(self.full_model, self.json_filename),
            AutoEvalColumn.dummy.name: self.full_model,
            AutoEvalColumn.revision.name: self.revision,
            AutoEvalColumn.average.name: average,
            AutoEvalColumn.license.name: self.license,
            AutoEvalColumn.likes.name: self.likes,
            AutoEvalColumn.params.name: self.num_params,
            AutoEvalColumn.still_on_hub.name: self.still_on_hub,
            AutoEvalColumn.merged.name: "merge" in self.tags if self.tags else False,
            AutoEvalColumn.moe.name: ("moe" in self.tags if self.tags else False) or "moe" in self.full_model.lower(),
            AutoEvalColumn.flagged.name: self.flagged,
            AutoEvalColumn.eval_time.name: self.eval_time,
            AutoEvalColumn.npm.name: npm
        }

        for task in Tasks:
            if task.value.benchmark in self.results:
                data_dict[task.value.col_name] = self.results[task.value.benchmark]

        if GET_ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS:
            data_dict[AutoEvalColumn.original_benchmark_average.name] = self.original_benchmark_average

        return data_dict


def get_request_file_for_model(requests_path, model_name, precision):
    """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
    request_files = os.path.join(
        requests_path,
        f"{model_name}_eval_request_*.json",
    )
    request_files = glob.glob(request_files)

    # Select correct request file (precision)
    request_file = ""
    request_files = sorted(request_files, reverse=True)
    for tmp_request_file in request_files:
        with open(tmp_request_file, "r") as f:
            req_content = json.load(f)
            if (
                req_content["status"] in ["FINISHED", "PENDING_NEW_EVAL" if SHOW_INCOMPLETE_EVALS else "FINISHED"]
                and req_content["precision"] == precision.split(".")[-1]
            ):
                request_file = tmp_request_file
    return request_file


def get_raw_eval_results(results_path: str, requests_path: str, dynamic_path: str) -> list[EvalResult]:
    """From the path of the results folder root, extract all needed info for results"""
    model_result_filepaths = []

    for root, _, files in os.walk(results_path):
        # We should only have json files in model results
        if len(files) == 0 or any([not f.endswith(".json") for f in files]):
            continue

        # Sort the files by date
        try:
            files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
        except dateutil.parser._parser.ParserError:
            files = [files[-1]]

        for file in files:
            model_result_filepaths.append(os.path.join(root, file))

    with open(dynamic_path) as f:
        dynamic_data = json.load(f)

    eval_results = {}
    for model_result_filepath in model_result_filepaths:
        # Creation of result
        eval_result = EvalResult.init_from_json_file(model_result_filepath)
        eval_result.update_with_request_file(requests_path)
        if eval_result.full_model in dynamic_data:
            eval_result.update_with_dynamic_file_dict(dynamic_data[eval_result.full_model])

        # Store results of same eval together
        eval_name = eval_result.eval_name
        if eval_name in eval_results.keys():
            eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
        else:
            eval_results[eval_name] = eval_result

    results = []
    for v in eval_results.values():
        try:
            if v.status in ["FINISHED", "PENDING_NEW_EVAL" if SHOW_INCOMPLETE_EVALS else "FINISHED"] and not v.hidden:
                v.to_dict() # we test if the dict version is complete
                results.append(v)
        except KeyError as e:  # not all eval values present
            continue

    return results