Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 1,546 Bytes
2a5f9fb df66f6e 2a5f9fb 7499b46 1841941 19a1194 1841941 2a5f9fb 1841941 2a5f9fb 4ff9eef 395eff6 0c7ef71 2a5f9fb 1841941 2a5f9fb 1841941 2a5f9fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import os
from huggingface_hub import HfApi
# clone / pull the lmeh eval data
H4_TOKEN = os.environ.get("H4_TOKEN", None)
LEADERBOARD_NAME = os.getenv("LEADERBOARD_NAME", "Open LLM Leaderboard")
REPO_ID = os.getenv("REPO_ID", "HuggingFaceH4/open_llm_leaderboard")
QUEUE_REPO = os.getenv("QUEUE_REPO", "open-llm-leaderboard/requests")
DYNAMIC_INFO_REPO = os.getenv("DYNAMIC_INFO_REPO", "open-llm-leaderboard/dynamic_model_information")
RESULTS_REPO = os.getenv("RESULTS_REPO", "open-llm-leaderboard/results")
PRIVATE_QUEUE_REPO = QUEUE_REPO
PRIVATE_RESULTS_REPO = RESULTS_REPO
#PRIVATE_QUEUE_REPO = "open-llm-leaderboard/private-requests"
#PRIVATE_RESULTS_REPO = "open-llm-leaderboard/private-results"
IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", True))
CACHE_PATH=os.getenv("HF_HOME", ".")
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
DYNAMIC_INFO_PATH = os.path.join(CACHE_PATH, "dynamic-info")
DYNAMIC_INFO_FILE_PATH = os.path.join(DYNAMIC_INFO_PATH, "model_infos.json")
EVAL_REQUESTS_PATH_PRIVATE = "eval-queue-private"
EVAL_RESULTS_PATH_PRIVATE = "eval-results-private"
PATH_TO_COLLECTION = os.getenv("PATH_TO_COLLECTION", "open-llm-leaderboard/llm-leaderboard-best-models-652d6c7965a4619fb5c27a03")
# Rate limit variables
RATE_LIMIT_PERIOD = int(os.getenv("RATE_LIMIT_PERIOD", 7))
RATE_LIMIT_QUOTA = int(os.getenv("RATE_LIMIT_QUOTA", 5))
HAS_HIGHER_RATE_LIMIT = os.environ.get("HAS_HIGHER_RATE_LIMIT", "TheBloke").split(',')
API = HfApi(token=H4_TOKEN)
|