Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 6,088 Bytes
9b2e755 0c7ef71 71ecfbb 0c7ef71 71ecfbb 9839977 71ecfbb 0c7ef71 5ad4694 ae618a2 ecefacb 71ecfbb 0c7ef71 ae618a2 ecefacb 0c7ef71 71ecfbb 0c7ef71 9839977 0c7ef71 5408125 0c7ef71 9839977 0c7ef71 71ecfbb 0c7ef71 9b2e755 8d502c8 9b2e755 71ecfbb 9b2e755 0c7ef71 9b2e755 0c7ef71 71ecfbb 0c7ef71 9b2e755 0c7ef71 9b2e755 9839977 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
from huggingface_hub import ModelFilter, snapshot_download
from huggingface_hub import ModelCard
import os
import json
import time
from collections import defaultdict
from src.submission.check_validity import is_model_on_hub, check_model_card, get_model_tags
from src.leaderboard.read_evals import EvalResult
from src.envs import (
DYNAMIC_INFO_REPO,
DYNAMIC_INFO_PATH,
DYNAMIC_INFO_FILE_PATH,
API,
H4_TOKEN,
ORIGINAL_HF_LEADERBOARD_RESULTS_REPO,
ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS_PATH,
GET_ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS
)
from src.display.utils import ORIGINAL_TASKS
def update_models(file_path, models, original_leaderboard_files=None):
"""
Search through all JSON files in the specified root folder and its subfolders,
and update the likes key in JSON dict from value of input dict
"""
with open(file_path, "r") as f:
model_infos = json.load(f)
for model_id, data in model_infos.items():
if model_id not in models:
data['still_on_hub'] = False
data['likes'] = 0
data['downloads'] = 0
data['created_at'] = ""
data['original_llm_scores'] = {}
continue
model_cfg = models[model_id]
data['likes'] = model_cfg.likes
data['downloads'] = model_cfg.downloads
data['created_at'] = str(model_cfg.created_at)
#data['params'] = get_model_size(model_cfg, data['precision'])
data['license'] = model_cfg.card_data.license if model_cfg.card_data is not None else ""
data['original_llm_scores'] = {}
# Is the model still on the hub?
model_name = model_id
if model_cfg.card_data is not None and model_cfg.card_data.base_model is not None:
model_name = model_cfg.card_data.base_model # for adapters, we look at the parent model
still_on_hub, _, _ = is_model_on_hub(
model_name=model_name, revision=data.get("revision"), trust_remote_code=True, test_tokenizer=False, token=H4_TOKEN
)
data['still_on_hub'] = still_on_hub
tags = []
if still_on_hub:
status, _, model_card = check_model_card(model_id)
tags = get_model_tags(model_card, model_id)
if original_leaderboard_files is not None and model_id in original_leaderboard_files:
eval_results = {}
for filepath in original_leaderboard_files[model_id]:
eval_result = EvalResult.init_from_json_file(filepath, is_original=True)
# Store results of same eval together
eval_name = eval_result.eval_name
if eval_name in eval_results.keys():
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
else:
eval_results[eval_name] = eval_result
for eval_result in eval_results.values():
precision = eval_result.precision.value.name
if len(eval_result.results) < len(ORIGINAL_TASKS):
continue
data['original_llm_scores'][precision] = sum([v for v in eval_result.results.values() if v is not None]) / len(ORIGINAL_TASKS)
data["tags"] = tags
with open(file_path, 'w') as f:
json.dump(model_infos, f, indent=2)
def update_dynamic_files():
""" This will only update metadata for models already linked in the repo, not add missing ones.
"""
snapshot_download(
repo_id=DYNAMIC_INFO_REPO, local_dir=DYNAMIC_INFO_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
)
print("UPDATE_DYNAMIC: Loaded snapshot")
# Get models
start = time.time()
models = list(API.list_models(
filter=ModelFilter(task="text-generation"),
full=False,
cardData=True,
fetch_config=True,
))
id_to_model = {model.id : model for model in models}
id_to_leaderboard_files = defaultdict(list)
if GET_ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS:
try:
print("UPDATE_DYNAMIC: Downloading Original HF Leaderboard results snapshot")
snapshot_download(
repo_id=ORIGINAL_HF_LEADERBOARD_RESULTS_REPO, local_dir=ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
)
#original_leaderboard_files = [] #API.list_repo_files(ORIGINAL_HF_LEADERBOARD_RESULTS_REPO, repo_type='dataset')
for dirpath,_,filenames in os.walk(ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS_PATH):
for f in filenames:
if not (f.startswith('results_') and f.endswith('.json')):
continue
filepath = os.path.join(dirpath[len(ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS_PATH)+1:], f)
model_id = filepath[:filepath.find('/results_')]
id_to_leaderboard_files[model_id].append(os.path.join(dirpath, f))
for model_id in id_to_leaderboard_files:
id_to_leaderboard_files[model_id].sort()
except Exception as e:
print(f"UPDATE_DYNAMIC: Could not download original results from : {e}")
id_to_leaderboard_files = None
print(f"UPDATE_DYNAMIC: Downloaded list of models in {time.time() - start:.2f} seconds")
start = time.time()
update_models(DYNAMIC_INFO_FILE_PATH, id_to_model, id_to_leaderboard_files)
print(f"UPDATE_DYNAMIC: updated in {time.time() - start:.2f} seconds")
API.upload_file(
path_or_fileobj=DYNAMIC_INFO_FILE_PATH,
path_in_repo=DYNAMIC_INFO_FILE_PATH.split("/")[-1],
repo_id=DYNAMIC_INFO_REPO,
repo_type="dataset",
commit_message=f"Daily request file update.",
)
print(f"UPDATE_DYNAMIC: pushed to hub")
|