eduagarcia's picture
better explation for use_remote_code=True
a761927
raw
history blame
7.6 kB
import json
import os
import re
from collections import defaultdict
from datetime import datetime, timedelta, timezone
import traceback
import huggingface_hub
from huggingface_hub import ModelCard
from huggingface_hub.hf_api import ModelInfo, get_safetensors_metadata
from transformers import AutoConfig, AutoTokenizer
from src.envs import HAS_HIGHER_RATE_LIMIT, TRUST_REMOTE_CODE
# ht to @Wauplin, thank you for the snippet!
# See https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/317
def check_model_card(repo_id: str) -> tuple[bool, str]:
# Returns operation status, and error message
try:
card = ModelCard.load(repo_id)
except huggingface_hub.utils.EntryNotFoundError:
return False, False, "Please add a model card to your model to explain how you trained/fine-tuned it.", None
except Exception as e:
return False, False, f"Error while loading the model card. Exception: {str(e)}", None
license = True
if card.data.license is None:
if not ("license_name" in card.data and "license_link" in card.data):
license = False
# Enforce card content
if len(card.text) < 200:
return False, license, "Please add a description to your model card bigger than 200 characters, it is too short.", None
# Enforce license metadata
if not license:
return True, False, (
"License not found. Please add a license to your model card using the `license` metadata or a"
" `license_name`/`license_link` pair."
), None
return True, True, "", card
def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=TRUST_REMOTE_CODE, test_tokenizer=False) -> tuple[bool, str, AutoConfig]:
try:
config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token) #, force_download=True)
if test_tokenizer:
try:
tk = AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
except ValueError as e:
return (
False,
f"uses a tokenizer which is not in a transformers release: {e}",
None
)
except Exception as e:
traceback.print_exc()
return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None)
return True, None, config
except ValueError as e:
traceback.print_exc()
return (
False,
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard. Open an new issue to ask for manual submission.",
None
)
except Exception as e:
traceback.print_exc()
if "You are trying to access a gated repo." in str(e):
return True, "uses a gated model.", None
return False, "was not found on hub!", None
def get_model_size(model_info: ModelInfo, precision: str):
size_pattern = re.compile(r"(\d+\.)?\d+(b|m)")
safetensors = None
try:
safetensors = get_safetensors_metadata(model_info.id)
except Exception as e:
print(e)
if safetensors is not None:
model_size = round(sum(safetensors.parameter_count.values()) / 1e9, 3)
else:
try:
size_match = re.search(size_pattern, model_info.id.lower())
model_size = size_match.group(0)
model_size = round(float(model_size[:-1]) if model_size[-1] == "b" else float(model_size[:-1]) / 1e3, 3)
except AttributeError as e:
return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.id.lower()) else 1
model_size = size_factor * model_size
return model_size
def get_model_arch(model_info: ModelInfo):
return model_info.config.get("architectures", "Unknown")
def user_submission_permission(org_or_user, users_to_submission_dates, rate_limit_period, rate_limit_quota):
if org_or_user not in users_to_submission_dates:
return True, ""
submission_dates = sorted(users_to_submission_dates[org_or_user])
time_limit = (datetime.now(timezone.utc) - timedelta(days=rate_limit_period)).strftime("%Y-%m-%dT%H:%M:%SZ")
submissions_after_timelimit = [d for d in submission_dates if d > time_limit]
num_models_submitted_in_period = len(submissions_after_timelimit)
if org_or_user in HAS_HIGHER_RATE_LIMIT:
rate_limit_quota = 10000
if num_models_submitted_in_period > rate_limit_quota:
error_msg = f"Organisation or user `{org_or_user}`"
error_msg += f"already has {num_models_submitted_in_period} model requests submitted to the leaderboard "
error_msg += f"in the last {rate_limit_period} days.\n"
error_msg += (
"Please wait a couple of days before resubmitting, so that everybody can enjoy using the leaderboard 🤗"
)
return False, error_msg
return True, ""
def already_submitted_models(requested_models_dir: str) -> set[str]:
depth = 1
file_names = []
users_to_submission_dates = defaultdict(list)
for root, _, files in os.walk(requested_models_dir):
current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
if current_depth == depth:
for file in files:
if not file.endswith(".json"):
continue
with open(os.path.join(root, file), "r") as f:
info = json.load(f)
file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
# Select organisation
if info["model"].count("/") == 0 or "submitted_time" not in info:
continue
organisation, _ = info["model"].split("/")
users_to_submission_dates[organisation].append(info["submitted_time"])
return set(file_names), users_to_submission_dates
def get_model_tags(model_card, model: str):
is_merge_from_metadata = False
is_moe_from_metadata = False
is_merge_from_model_card = False
is_moe_from_model_card = False
# Storing the model tags
tags = []
merge_keywords = ["merged model", "merge model"]
moe_keywords = ["moe", "mixtral"]
if model_card is not None:
if model_card.data.tags:
is_merge_from_metadata = "merge" in model_card.data.tags
is_moe_from_metadata = "moe" in model_card.data.tags
# If the model is a merge but not saying it in the metadata, we flag it
is_merge_from_model_card = any(keyword in model_card.text.lower() for keyword in merge_keywords)
if is_merge_from_model_card or is_merge_from_metadata:
tags.append("merge")
if not is_merge_from_metadata:
tags.append("flagged:undisclosed_merge")
is_moe_from_model_card = any(keyword in model_card.text.lower() for keyword in moe_keywords)
is_moe_from_name = "moe" in model.lower().replace("/", "-").replace("_", "-").split("-")
if is_moe_from_model_card or is_moe_from_name or is_moe_from_metadata:
tags.append("moe")
# We no longer tag undisclosed MoEs
#if not is_moe_from_metadata:
# tags.append("flagged:undisclosed_moe")
return tags