eduagarcia's picture
fix enum value
e2369db
raw
history blame
13.1 kB
from dataclasses import dataclass, make_dataclass
from enum import Enum
from typing import List
import pandas as pd
import os
import json
from copy import deepcopy
from yaml import safe_load
from src.envs import GET_ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS, TASK_CONFIG
def fields(raw_class):
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
@dataclass
class Task:
benchmark: str
metric: str
col_name: str
baseline: float = 0.0
human_baseline: float = None
expert_human_baseline: float = None
few_shot: int = None
limit: int = None
task_list: List[str] = None
link: str = None
description: str = None
sources: List[str] = None
baseline_sources: List[str] = None
citation: str = None
Tasks = Enum('Tasks', {k: Task(**v) for k, v in TASK_CONFIG['tasks'].items()})
# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
name: str
type: str
displayed_by_default: bool
hidden: bool = False
never_hidden: bool = False
dummy: bool = False
auto_eval_column_dict = []
# Init
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
#Scores
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
for task in Tasks:
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
# Model information
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
auto_eval_column_dict.append(["merged", ColumnContent, ColumnContent("Merged", "bool", False)])
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❀️", "number", False)])
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False, hidden=True)])
auto_eval_column_dict.append(["model_sha", ColumnContent, ColumnContent("Model sha", "str", False, False)])
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Revision", "str", False, False)])
auto_eval_column_dict.append(["flagged", ColumnContent, ColumnContent("Flagged", "bool", False, hidden=True)])
auto_eval_column_dict.append(["moe", ColumnContent, ColumnContent("MoE", "bool", False, hidden=True)])
auto_eval_column_dict.append(["eval_time", ColumnContent, ColumnContent("Evaluation Time (s)", "number", False)])
# Dummy column for the search bar (hidden by the custom CSS)
auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("Model Name", "str", False, dummy=True)])
if GET_ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS:
auto_eval_column_dict.append(["original_benchmark_average", ColumnContent, ColumnContent("πŸ€— Leaderboard Average", "number", False)])
auto_eval_column_dict.append(["npm", ColumnContent, ColumnContent("NPM (Average) ⬆️", "number", False)])
auto_eval_column_dict.append(["main_language", ColumnContent, ColumnContent("Main Language", "str", False)])
# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
@dataclass(frozen=True)
class EvalQueueColumn: # Queue column
model = ColumnContent("model", "markdown", True)
revision = ColumnContent("revision", "str", True)
private = ColumnContent("private", "bool", True)
precision = ColumnContent("precision", "str", True)
weight_type = ColumnContent("weight_type", "str", "Original")
status = ColumnContent("status", "str", True)
baseline_row = {
AutoEvalColumn.model.name: "<p>Baseline</p>",
AutoEvalColumn.revision.name: "N/A",
AutoEvalColumn.model_sha.name: "N/A",
AutoEvalColumn.precision.name: "?",
AutoEvalColumn.merged.name: False,
#AutoEvalColumn.average.name: 31.0,
AutoEvalColumn.dummy.name: "baseline",
AutoEvalColumn.model_type.name: "",
AutoEvalColumn.flagged.name: False,
AutoEvalColumn.model_type_symbol.name: "?",
AutoEvalColumn.architecture.name: None,
AutoEvalColumn.weight_type.name: None,
AutoEvalColumn.params.name: 0,
AutoEvalColumn.likes.name: 0,
AutoEvalColumn.license.name: "",
AutoEvalColumn.still_on_hub.name: False,
AutoEvalColumn.moe.name: False,
AutoEvalColumn.eval_time.name: 0.0,
AutoEvalColumn.main_language.name: "?"
}
baseline_list = []
npm = []
for task in Tasks:
baseline_row[task.value.col_name] = task.value.baseline
res = task.value.baseline
if res is not None and (isinstance(res, float) or isinstance(res, int)):
baseline_list.append(res)
npm.append((res - task.value.baseline) / (100 - task.value.baseline))
baseline_row[AutoEvalColumn.average.name] = round(sum(baseline_list) / len(baseline_list), 2)
baseline_row[AutoEvalColumn.npm.name] = round(sum(npm) / len(npm), 2)
if GET_ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS:
baseline_row["πŸ€— Leaderboard Average"] = None
# Average ⬆️ human baseline is 0.897 (source: averaging human baselines below)
# ARC human baseline is 0.80 (source: https://lab42.global/arc/)
# HellaSwag human baseline is 0.95 (source: https://deepgram.com/learn/hellaswag-llm-benchmark-guide)
# MMLU human baseline is 0.898 (source: https://openreview.net/forum?id=d7KBjmI3GmQ)
# TruthfulQA human baseline is 0.94(source: https://arxiv.org/pdf/2109.07958.pdf)
# Winogrande: https://leaderboard.allenai.org/winogrande/submissions/public
# GSM8K: paper
# Define the human baselines
human_baseline_row = {
AutoEvalColumn.model.name: "<p>Human performance</p>",
AutoEvalColumn.revision.name: "N/A",
AutoEvalColumn.model_sha.name: "N/A",
AutoEvalColumn.precision.name: "?",
#AutoEvalColumn.average.name: 92.75,
AutoEvalColumn.merged.name: False,
AutoEvalColumn.dummy.name: "human_baseline",
AutoEvalColumn.model_type.name: "",
AutoEvalColumn.flagged.name: False,
AutoEvalColumn.model_type_symbol.name: "?",
AutoEvalColumn.architecture.name: None,
AutoEvalColumn.weight_type.name: None,
AutoEvalColumn.params.name: 0,
AutoEvalColumn.likes.name: 0,
AutoEvalColumn.license.name: "",
AutoEvalColumn.still_on_hub.name: False,
AutoEvalColumn.moe.name: False,
AutoEvalColumn.eval_time.name: 0.0,
AutoEvalColumn.main_language.name: "?",
}
baseline_list = []
npm = []
for task in Tasks:
human_baseline_row[task.value.col_name] = task.value.human_baseline
res = task.value.human_baseline
if res is None or not (isinstance(res, float) or isinstance(res, int)):
res = 95.0
baseline_list.append(res)
npm.append((res - task.value.baseline) / (100 - task.value.baseline))
human_baseline_row[AutoEvalColumn.average.name] = round(sum(baseline_list) / len(baseline_list), 2)
human_baseline_row[AutoEvalColumn.npm.name] = round(sum(npm) / len(npm), 2)
if GET_ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS:
human_baseline_row["πŸ€— Leaderboard Average"] = None
@dataclass
class ModelDetails:
name: str
symbol: str = "" # emoji, only for the model type
class ModelType(Enum):
PT = ModelDetails(name="pretrained", symbol="🟒")
LA = ModelDetails(name="language adapted (FP, FT, ...)", symbol="πŸ†Ž")
FT = ModelDetails(name="fine-tuned/fp on domain-specific datasets", symbol="πŸ”Ά")
chat = ModelDetails(name="chat (RLHF, DPO, IFT, ...)", symbol="πŸ’¬")
merges = ModelDetails(name="base merges and moerges", symbol="🀝")
proprietary = ModelDetails(name="proprietary (closed)", symbol="πŸ”’")
Unknown = ModelDetails(name="", symbol="?")
def to_str(self, separator=" "):
return f"{self.value.symbol}{separator}{self.value.name}"
@staticmethod
def from_str(type):
if "fine-tuned" in type or "πŸ”Ά" in type:
return ModelType.FT
if "language" in type or "πŸ†Ž" in type:
return ModelType.LA
if "pretrained" in type or "🟒" in type:
return ModelType.PT
if any([k in type for k in ["instruction-tuned", "RL-tuned", "chat", "🟦", "β­•", "πŸ’¬"]]):
return ModelType.chat
if "merge" in type or "🀝" in type:
return ModelType.merges
if "proprietary" in type or "πŸ”’" in type:
return ModelType.proprietary
return ModelType.Unknown
class WeightType(Enum):
Adapter = ModelDetails("Adapter")
Original = ModelDetails("Original")
Delta = ModelDetails("Delta")
class Precision(Enum):
float16 = ModelDetails("float16")
bfloat16 = ModelDetails("bfloat16")
qt_8bit = ModelDetails("8bit")
qt_4bit = ModelDetails("4bit")
qt_GPTQ = ModelDetails("GPTQ")
Unknown = ModelDetails("?")
def from_str(precision):
if precision in ["torch.float16", "float16"]:
return Precision.float16
if precision in ["torch.bfloat16", "bfloat16"]:
return Precision.bfloat16
if precision in ["8bit"]:
return Precision.qt_8bit
if precision in ["4bit"]:
return Precision.qt_4bit
if precision in ["GPTQ", "None"]:
return Precision.qt_GPTQ
return Precision.Unknown
class Language(Enum):
Portuguese = ModelDetails("Portuguese")
English = ModelDetails("English")
Chinese = ModelDetails("Chinese")
Spanish = ModelDetails("Spanish")
Other = ModelDetails("Other")
Unknown = ModelDetails("?")
def from_str(language):
language = language.lower().replace('-', '').replace('_', '')
if language in ["pt", "ptpt", "ptbr", "portuguese"]:
return Language.Portuguese
if language in ["en", "enus", "engb", "english"]:
return Language.English
if language in ["es", "spanish"]:
return Language.Spanish
if language in ["zh", "chinese"]:
return Language.Chinese
if language in ["other", "multi", "multilingual"]:
return Language.Other
return Language.Unknown
#External models
external_rows = []
if os.path.exists('external_models_results.json'):
with open('external_models_results.json', 'r', encoding='utf8') as f:
all_models = json.load(f)
for model_data in all_models:
model_row = deepcopy(baseline_row)
model_row[AutoEvalColumn.model.name] = f'<a target="_blank" href="{model_data["link"]}" style="color: var(--text-color); text-decoration: underline;text-decoration-style: dotted;">{model_data["name"]} [{model_data["date"]}]</a>'
model_row[AutoEvalColumn.dummy.name] = model_data['model']
for task in Tasks:
model_row[task.value.col_name] = round(model_data['result_metrics'][task.value.benchmark]*100, 2)
model_row[AutoEvalColumn.average.name] = round(model_data['result_metrics_average']*100, 2)
model_row[AutoEvalColumn.npm.name] = round(model_data['result_metrics_npm']*100, 2)
model_type = ModelType.from_str(model_data['model_type'])
model_row[AutoEvalColumn.model_type.name] = model_type.value.name
model_row[AutoEvalColumn.model_type_symbol.name] = model_type.value.symbol
if model_type == ModelType.proprietary:
model_row[AutoEvalColumn.license.name] = "Proprietary"
if 'params' in model_data:
model_row[AutoEvalColumn.params.name] = model_data['params']
model_row[AutoEvalColumn.main_language.name] = model_data['main_language']
external_rows.append(model_row)
# Column selection
COLS = [c.name for c in fields(AutoEvalColumn)]
TYPES = [c.type for c in fields(AutoEvalColumn)]
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
BENCHMARK_COLS = [t.value.col_name for t in Tasks]
NUMERIC_INTERVALS = {
"?": pd.Interval(-1, 0, closed="right"),
"~1B": pd.Interval(0, 2, closed="right"),
"~3B": pd.Interval(2, 5, closed="right"),
"~8B": pd.Interval(5, 10, closed="right"),
"~16B": pd.Interval(10, 23, closed="right"),
"~35B": pd.Interval(23, 50, closed="right"),
"~70B": pd.Interval(50, 90, closed="right"),
"100B+": pd.Interval(90, 10000, closed="right"),
}
#Original HF LEaderboard tasks and metrics
ORIGINAL_TASKS = [
("arc:challenge", "acc_norm"),
("hellaswag", "acc_norm"),
("hendrycksTest", "acc"),
("truthfulqa:mc", "mc2"),
("winogrande", "acc"),
("gsm8k", "acc")
]