Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
from dataclasses import dataclass, make_dataclass | |
from enum import Enum | |
from typing import List | |
import pandas as pd | |
def fields(raw_class): | |
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] | |
class Task: | |
benchmark: str | |
metric: str | |
col_name: str | |
baseline: float = 0.0 | |
human_baseline: float = 0.0 | |
few_shot: int = None | |
limit: int = None | |
task_list: List[str] = None | |
link: str = None | |
description: str = None | |
class Tasks(Enum): | |
oab_exams = Task( | |
benchmark="oab_exams", | |
metric="exact_match", | |
col_name="OAB Exams", | |
baseline=25.0, | |
human_baseline=50.0, | |
few_shot=5, | |
limit=None, | |
task_list=["oab_exams_generate"], | |
link="https://huggingface.co/datasets/eduagarcia/oab_exams", | |
description="OAB Exams is a dataset of 2,000 questions from the Brazilian Bar Association's exams." | |
) | |
brazilian_court_decisions_judgment = Task( | |
benchmark="brazilian_court_decisions_judgment", | |
metric="f1_macro", | |
col_name="BR Court Decisions", | |
baseline=33.33, | |
human_baseline=100.0, | |
few_shot=5, | |
limit=None, | |
task_list=["brazilian_court_decisions_judgment_generate"], | |
link="https://huggingface.co/datasets/joelniklaus/brazilian_court_decisions", | |
description="A classification dataset of court decisions from the Tribunal de Justiça de Alagoas (TJAL, the State Supreme Court of Alagoas (Brazil)." | |
) | |
datalawyer_frases = Task( | |
benchmark="datalawyer_frases", | |
metric="f1_macro", | |
col_name="DL Frases", | |
baseline=10.0, | |
human_baseline=100.0, | |
few_shot=15, | |
limit=2000, | |
task_list=["datalawyer_frases_generate"], | |
link="https://huggingface.co/datasets/eduagarcia/portuguese_benchmark", | |
description="A classification dataset" | |
) | |
rrip = Task( | |
benchmark="rrip", | |
metric="f1_macro", | |
col_name="RRIP", | |
baseline=12.5, | |
human_baseline=100.0, | |
few_shot=15, | |
limit=None, | |
task_list=["rrip_generate"], | |
link="https://huggingface.co/datasets/eduagarcia/portuguese_benchmark", | |
description="A classification dataset" | |
) | |
#arc = Task("arc:challenge", "acc_norm", "ARC", 25.0, 80.0) | |
#hellaswag = Task("hellaswag", "acc_norm", "HellaSwag", 25.0, 95.0) | |
#mmlu = Task("hendrycksTest", "acc", "MMLU", 25.0, 89.8) | |
#truthfulqa = Task("truthfulqa:mc", "mc2", "TruthfulQA", 25.0, 94.0) | |
#winogrande = Task("winogrande", "acc", "Winogrande", 50.0, 94.0) | |
#gsm8k = Task("gsm8k", "acc", "GSM8K", 0.21, 100) | |
# These classes are for user facing column names, | |
# to avoid having to change them all around the code | |
# when a modif is needed | |
class ColumnContent: | |
name: str | |
type: str | |
displayed_by_default: bool | |
hidden: bool = False | |
never_hidden: bool = False | |
dummy: bool = False | |
auto_eval_column_dict = [] | |
# Init | |
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)]) | |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)]) | |
#Scores | |
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average β¬οΈ", "number", True)]) | |
for task in Tasks: | |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)]) | |
# Model information | |
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)]) | |
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)]) | |
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)]) | |
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", True)]) | |
auto_eval_column_dict.append(["merged", ColumnContent, ColumnContent("Merged", "bool", False)]) | |
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)]) | |
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)]) | |
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub β€οΈ", "number", False)]) | |
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False, hidden=True)]) | |
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)]) | |
auto_eval_column_dict.append(["flagged", ColumnContent, ColumnContent("Flagged", "bool", False, hidden=True)]) | |
auto_eval_column_dict.append(["moe", ColumnContent, ColumnContent("MoE", "bool", False, hidden=True)]) | |
auto_eval_column_dict.append(["eval_time", ColumnContent, ColumnContent("Evaluation Time (s)", "number", False)]) | |
# Dummy column for the search bar (hidden by the custom CSS) | |
auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("Model Name", "str", False, dummy=True)]) | |
# We use make dataclass to dynamically fill the scores from Tasks | |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True) | |
class EvalQueueColumn: # Queue column | |
model = ColumnContent("model", "markdown", True) | |
revision = ColumnContent("revision", "str", True) | |
private = ColumnContent("private", "bool", True) | |
precision = ColumnContent("precision", "str", True) | |
weight_type = ColumnContent("weight_type", "str", "Original") | |
status = ColumnContent("status", "str", True) | |
baseline_row = { | |
AutoEvalColumn.model.name: "<p>Baseline</p>", | |
AutoEvalColumn.revision.name: "N/A", | |
AutoEvalColumn.precision.name: "?", | |
AutoEvalColumn.merged.name: False, | |
#AutoEvalColumn.average.name: 31.0, | |
#AutoEvalColumn.arc.name: 25.0, | |
#AutoEvalColumn.hellaswag.name: 25.0, | |
#AutoEvalColumn.mmlu.name: 25.0, | |
#AutoEvalColumn.truthfulqa.name: 25.0, | |
#AutoEvalColumn.winogrande.name: 50.0, | |
#AutoEvalColumn.gsm8k.name: 0.21, | |
AutoEvalColumn.dummy.name: "baseline", | |
AutoEvalColumn.model_type.name: "", | |
AutoEvalColumn.flagged.name: False, | |
AutoEvalColumn.model_type_symbol.name: "?", | |
AutoEvalColumn.architecture.name: None, | |
AutoEvalColumn.weight_type.name: None, | |
AutoEvalColumn.params.name: 0, | |
AutoEvalColumn.likes.name: 0, | |
AutoEvalColumn.license.name: "", | |
AutoEvalColumn.still_on_hub.name: False, | |
AutoEvalColumn.moe.name: False, | |
AutoEvalColumn.eval_time.name: 0.0 | |
} | |
baseline_list = [] | |
for task in Tasks: | |
baseline_row[task.value.col_name] = task.value.baseline | |
if task.value.baseline is not None: | |
baseline_list.append(task.value.baseline) | |
baseline_row[AutoEvalColumn.average.name] = round(sum(baseline_list) / len(baseline_list), 2) | |
# Average β¬οΈ human baseline is 0.897 (source: averaging human baselines below) | |
# ARC human baseline is 0.80 (source: https://lab42.global/arc/) | |
# HellaSwag human baseline is 0.95 (source: https://deepgram.com/learn/hellaswag-llm-benchmark-guide) | |
# MMLU human baseline is 0.898 (source: https://openreview.net/forum?id=d7KBjmI3GmQ) | |
# TruthfulQA human baseline is 0.94(source: https://arxiv.org/pdf/2109.07958.pdf) | |
# Winogrande: https://leaderboard.allenai.org/winogrande/submissions/public | |
# GSM8K: paper | |
# Define the human baselines | |
human_baseline_row = { | |
AutoEvalColumn.model.name: "<p>Human performance</p>", | |
AutoEvalColumn.revision.name: "N/A", | |
AutoEvalColumn.precision.name: "?", | |
#AutoEvalColumn.average.name: 92.75, | |
AutoEvalColumn.merged.name: False, | |
#AutoEvalColumn.arc.name: 80.0, | |
#AutoEvalColumn.hellaswag.name: 95.0, | |
#AutoEvalColumn.mmlu.name: 89.8, | |
#AutoEvalColumn.truthfulqa.name: 94.0, | |
#AutoEvalColumn.winogrande.name: 94.0, | |
#AutoEvalColumn.gsm8k.name: 100, | |
AutoEvalColumn.dummy.name: "human_baseline", | |
AutoEvalColumn.model_type.name: "", | |
AutoEvalColumn.flagged.name: False, | |
AutoEvalColumn.model_type_symbol.name: "?", | |
AutoEvalColumn.architecture.name: None, | |
AutoEvalColumn.weight_type.name: None, | |
AutoEvalColumn.params.name: 0, | |
AutoEvalColumn.likes.name: 0, | |
AutoEvalColumn.license.name: "", | |
AutoEvalColumn.still_on_hub.name: False, | |
AutoEvalColumn.moe.name: False, | |
AutoEvalColumn.eval_time.name: 0.0 | |
} | |
baseline_list = [] | |
for task in Tasks: | |
human_baseline_row[task.value.col_name] = task.value.human_baseline | |
if task.value.human_baseline is not None: | |
baseline_list.append(task.value.human_baseline) | |
human_baseline_row[AutoEvalColumn.average.name] = round(sum(baseline_list) / len(baseline_list), 2) | |
class ModelDetails: | |
name: str | |
symbol: str = "" # emoji, only for the model type | |
class ModelType(Enum): | |
PT = ModelDetails(name="pretrained", symbol="π’") | |
FT = ModelDetails(name="fine-tuned on domain-specific datasets", symbol="πΆ") | |
chat = ModelDetails(name="chat models (RLHF, DPO, IFT, ...)", symbol="π¬") | |
merges = ModelDetails(name="base merges and moerges", symbol="π€") | |
Unknown = ModelDetails(name="", symbol="?") | |
def to_str(self, separator=" "): | |
return f"{self.value.symbol}{separator}{self.value.name}" | |
def from_str(type): | |
if "fine-tuned" in type or "πΆ" in type: | |
return ModelType.FT | |
if "pretrained" in type or "π’" in type: | |
return ModelType.PT | |
if any([k in type for k in ["instruction-tuned", "RL-tuned", "chat", "π¦", "β", "π¬"]]): | |
return ModelType.chat | |
if "merge" in type or "π€" in type: | |
return ModelType.merges | |
return ModelType.Unknown | |
class WeightType(Enum): | |
Adapter = ModelDetails("Adapter") | |
Original = ModelDetails("Original") | |
Delta = ModelDetails("Delta") | |
class Precision(Enum): | |
float16 = ModelDetails("float16") | |
bfloat16 = ModelDetails("bfloat16") | |
qt_8bit = ModelDetails("8bit") | |
qt_4bit = ModelDetails("4bit") | |
qt_GPTQ = ModelDetails("GPTQ") | |
Unknown = ModelDetails("?") | |
def from_str(precision): | |
if precision in ["torch.float16", "float16"]: | |
return Precision.float16 | |
if precision in ["torch.bfloat16", "bfloat16"]: | |
return Precision.bfloat16 | |
if precision in ["8bit"]: | |
return Precision.qt_8bit | |
if precision in ["4bit"]: | |
return Precision.qt_4bit | |
if precision in ["GPTQ", "None"]: | |
return Precision.qt_GPTQ | |
return Precision.Unknown | |
# Column selection | |
COLS = [c.name for c in fields(AutoEvalColumn)] | |
TYPES = [c.type for c in fields(AutoEvalColumn)] | |
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] | |
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] | |
BENCHMARK_COLS = [t.value.col_name for t in Tasks] | |
NUMERIC_INTERVALS = { | |
"?": pd.Interval(-1, 0, closed="right"), | |
"~1.5": pd.Interval(0, 2, closed="right"), | |
"~3": pd.Interval(2, 4, closed="right"), | |
"~7": pd.Interval(4, 9, closed="right"), | |
"~13": pd.Interval(9, 20, closed="right"), | |
"~35": pd.Interval(20, 45, closed="right"), | |
"~60": pd.Interval(45, 70, closed="right"), | |
"70+": pd.Interval(70, 10000, closed="right"), | |
} | |