eduagarcia's picture
Update src/leaderboard/read_evals.py
09cd30b verified
import glob
import json
import math
import os
from dataclasses import dataclass
from typing import List
import traceback
import dateutil
import numpy as np
from huggingface_hub import ModelCard
from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, Language, WeightType, ORIGINAL_TASKS
from src.envs import GET_ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS, SHOW_INCOMPLETE_EVALS
@dataclass
class EvalResult:
# Also see src.display.utils.AutoEvalColumn for what will be displayed.
eval_name: str # org_model_precision (uid)
full_model: str # org/model (path on hub)
org: str
model: str
results: dict
model_sha: str = "" # commit hash
revision: str = "main"
precision: Precision = Precision.Unknown
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
weight_type: WeightType = WeightType.Original # Original or Adapter
main_language: Language = Language.Unknown
architecture: str = "Unknown" # From config file
license: str = "?"
likes: int = 0
num_params: int = 0
date: str = "" # submission date of request file
still_on_hub: bool = True
is_merge: bool = False
flagged: bool = False
status: str = "FINISHED"
tags: list = None
json_filename: str = None
eval_time: float = 0.0
original_benchmark_average: float = None
hidden: bool = False # Do not show on the leaderboard
num_evals_model_rev: int = 1
@classmethod
def init_from_json_file(self, json_filepath, is_original=False):
"""Inits the result from the specific model result file"""
with open(json_filepath) as fp:
data = json.load(fp)
json_filename = os.path.basename(json_filepath)
# We manage the legacy config format
config = data.get("config_general")
# Precision
precision = Precision.from_str(config.get("model_dtype"))
num_params = round(config.get("model_num_parameters", 0) / 1_000_000_000, 2)
revision = config.get("model_revision", "main")
model_sha = config.get("model_sha", "")
# Get model and org
org_and_model = config.get("model_name")
org_and_model = org_and_model.split("/", 1)
prefix = f"{precision.value.name}"
if revision != "main":
prefix = f"{revision}_{prefix}"
if len(org_and_model) == 1:
org = None
model = org_and_model[0]
result_key = f"{model}_{prefix}"
else:
org = org_and_model[0]
model = org_and_model[1]
result_key = f"{org}_{model}_{prefix}"
full_model = "/".join(org_and_model)
# Extract results available in this file (some results are split in several files)
results = {}
tasks = [(task.value.benchmark, task.value.metric) for task in Tasks]
if is_original:
tasks = ORIGINAL_TASKS
for task in tasks:
benchmark, metric = task
# We skip old mmlu entries
wrong_mmlu_version = False
if benchmark == "hendrycksTest":
for mmlu_k in ["harness|hendrycksTest-abstract_algebra|5", "hendrycksTest-abstract_algebra"]:
if mmlu_k in data["versions"] and data["versions"][mmlu_k] == 0:
wrong_mmlu_version = True
if wrong_mmlu_version:
continue
# Some truthfulQA values are NaNs
if benchmark == "truthfulqa:mc" and "harness|truthfulqa:mc|0" in data["results"]:
if math.isnan(float(data["results"]["harness|truthfulqa:mc|0"][metric])):
results[benchmark] = 0.0
continue
def get_metric(v):
res = v.get(metric, None)
if res is None:
res = v.get(metric + ',all', None)
if res is None:
res = v.get(metric + ',None', None)
if res is None:
res = v.get('main_score', None)
return res
# We average all scores of a given metric (mostly for mmlu)
accs = np.array([get_metric(v) for k, v in data["results"].items() if benchmark in k])
if accs.size == 0 or any([acc is None for acc in accs]):
continue
mean_acc = np.mean(accs) * 100.0
results[benchmark] = mean_acc
return self(
eval_name=result_key,
full_model=full_model,
org=org,
model=model,
results=results,
model_sha=model_sha,
revision=revision,
precision=precision,
json_filename=json_filename,
eval_time=config.get("total_evaluation_time_seconds", 0.0),
num_params=num_params
)
def update_with_request_file(self, requests_path):
"""Finds the relevant request file for the current model and updates info with it"""
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name, self.revision)
try:
with open(request_file, "r") as f:
request = json.load(f)
self.model_type = ModelType.from_str(request.get("model_type", "Unknown"))
self.weight_type = WeightType[request.get("weight_type", "Original")]
self.num_params = max(request.get("params", 0), self.num_params)
self.date = request.get("submitted_time", "")
self.architecture = request.get("architectures", "Unknown")
self.status = request.get("status", "FAILED")
self.hidden = request.get("hidden", False)
self.main_language = request.get("main_language", "?")
except Exception as e:
self.status = "FAILED"
print(f"Could not find request file for {self.org}/{self.model}, precision {self.precision.value.name}, revision {self.revision}")
def update_with_dynamic_file_dict(self, file_dict):
self.license = file_dict.get("license", "?")
self.likes = file_dict.get("likes", 0)
self.still_on_hub = file_dict["still_on_hub"]
self.flagged = any("flagged" in tag for tag in file_dict["tags"])
self.tags = file_dict["tags"]
if 'original_llm_scores' in file_dict:
if len(file_dict['original_llm_scores']) > 0:
if self.precision.value.name in file_dict['original_llm_scores']:
self.original_benchmark_average = file_dict['original_llm_scores'][self.precision.value.name]
else:
self.original_benchmark_average = max(list(file_dict['original_llm_scores'].values()))
def to_dict(self):
"""Converts the Eval Result to a dict compatible with our dataframe display"""
average = []
npm = []
for task in Tasks:
if task.value.benchmark not in self.results:
continue
res = self.results[task.value.benchmark]
if res is None or np.isnan(res) or not (isinstance(res, float) or isinstance(res, int)):
continue
average.append(res)
npm.append((res-task.value.baseline)*100.0 / (100.0-task.value.baseline))
average = round(sum(average)/len(average), 2)
npm = round(sum(npm)/len(npm), 2)
data_dict = {
"eval_name": self.eval_name, # not a column, just a save name,
AutoEvalColumn.precision.name: self.precision.value.name,
AutoEvalColumn.model_type.name: self.model_type.value.name,
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
AutoEvalColumn.architecture.name: self.architecture,
AutoEvalColumn.model.name: make_clickable_model(self.full_model, self.json_filename, revision=self.revision, precision=self.precision.value.name, num_evals_same_model=self.num_evals_model_rev),
AutoEvalColumn.dummy.name: self.full_model,
AutoEvalColumn.revision.name: self.revision,
AutoEvalColumn.average.name: average,
AutoEvalColumn.license.name: self.license,
AutoEvalColumn.likes.name: self.likes,
AutoEvalColumn.params.name: self.num_params,
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
AutoEvalColumn.merged.name: "merge" in self.tags if self.tags else False,
AutoEvalColumn.moe.name: ("moe" in self.tags if self.tags else False) or "moe" in self.full_model.lower(),
AutoEvalColumn.flagged.name: self.flagged,
AutoEvalColumn.eval_time.name: self.eval_time,
AutoEvalColumn.npm.name: npm,
AutoEvalColumn.main_language.name: self.main_language
}
for task in Tasks:
if task.value.benchmark in self.results:
data_dict[task.value.col_name] = self.results[task.value.benchmark]
if GET_ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS:
data_dict[AutoEvalColumn.original_benchmark_average.name] = self.original_benchmark_average
return data_dict
def get_request_file_for_model(requests_path, model_name, precision, revision):
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
request_files = os.path.join(
requests_path,
f"{model_name}_eval_request_*.json",
)
request_files = glob.glob(request_files)
if revision is None or revision == "":
revision = "main"
# Select correct request file (precision)
request_file = ""
request_files = sorted(request_files, reverse=True)
for tmp_request_file in request_files:
with open(tmp_request_file, "r") as f:
req_content = json.load(f)
if req_content["revision"] is None or req_content["revision"] == "":
req_content["revision"] = "main"
if (
req_content["status"] in ["FINISHED", "PENDING_NEW_EVAL" if SHOW_INCOMPLETE_EVALS else "FINISHED"]
and req_content["precision"] == precision.split(".")[-1]
and req_content["revision"] == revision
):
request_file = tmp_request_file
return request_file
def get_raw_eval_results(results_path: str, requests_path: str, dynamic_path: str) -> list[EvalResult]:
"""From the path of the results folder root, extract all needed info for results"""
model_result_filepaths = []
for root, _, files in os.walk(results_path):
# We should only have json files in model results
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
continue
# Sort the files by date
try:
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
except dateutil.parser._parser.ParserError:
files = [files[-1]]
for file in files:
model_result_filepaths.append(os.path.join(root, file))
with open(dynamic_path) as f:
dynamic_data = json.load(f)
count_model_rev = {}
eval_results = {}
for model_result_filepath in model_result_filepaths:
# Creation of result
eval_result = EvalResult.init_from_json_file(model_result_filepath)
eval_result.update_with_request_file(requests_path)
if eval_result.full_model in dynamic_data:
eval_result.update_with_dynamic_file_dict(dynamic_data[eval_result.full_model])
# Store results of same eval together
eval_name = eval_result.eval_name
if eval_name in eval_results.keys():
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
eval_results[eval_name].json_filename = eval_result.json_filename
else:
eval_results[eval_name] = eval_result
#count model_revision to display precision if duplicate
if eval_result.status in ["FINISHED", "PENDING_NEW_EVAL" if SHOW_INCOMPLETE_EVALS else "FINISHED"] and not eval_result.hidden:
model_rev_key = f"{eval_result.full_model}_{eval_result.revision}"
if model_rev_key not in count_model_rev:
count_model_rev[model_rev_key] = 1
else:
count_model_rev[model_rev_key] += 1
results = []
for v in eval_results.values():
try:
if v.status in ["FINISHED", "PENDING_NEW_EVAL" if SHOW_INCOMPLETE_EVALS else "FINISHED"] and not v.hidden:
model_rev_key = f"{v.full_model}_{v.revision}"
v.num_evals_model_rev = count_model_rev[model_rev_key]
v.to_dict() # we test if the dict version is complete
results.append(v)
except KeyError as e: # not all eval values present
continue
return results