eduagarcia commited on
Commit
48719fa
·
1 Parent(s): b2fe6a1

fix portuguese itens in collections

Browse files
Files changed (2) hide show
  1. app.py +2 -2
  2. src/tools/collections.py +12 -5
app.py CHANGED
@@ -106,7 +106,7 @@ def init_space(full_init: bool = True):
106
  benchmark_cols=BENCHMARK_COLS,
107
  show_incomplete=SHOW_INCOMPLETE_EVALS
108
  )
109
- update_collections(original_df.copy())
110
  leaderboard_df = original_df.copy()
111
 
112
  plot_df = create_plot_df(create_scores_df(raw_data))
@@ -556,7 +556,7 @@ def update_dynamic_files_wrapper():
556
  scheduler = BackgroundScheduler(daemon=True)
557
  scheduler.add_job(restart_space, "interval", seconds=10800, next_run_time=datetime.now() + timedelta(hours=3)) # restarted every 3h
558
  scheduler.add_job(update_dynamic_files_wrapper, "interval", seconds=1800, next_run_time=datetime.now() + timedelta(minutes=5)) # launched every 30 minutes
559
- #scheduler.add_job(update_collections, "interval", args=(original_df.copy(),), seconds=3600, next_run_time=datetime.now() + timedelta(minutes=1))
560
  scheduler.start()
561
 
562
  demo.queue(default_concurrency_limit=40).launch()
 
106
  benchmark_cols=BENCHMARK_COLS,
107
  show_incomplete=SHOW_INCOMPLETE_EVALS
108
  )
109
+ #update_collections(original_df.copy())
110
  leaderboard_df = original_df.copy()
111
 
112
  plot_df = create_plot_df(create_scores_df(raw_data))
 
556
  scheduler = BackgroundScheduler(daemon=True)
557
  scheduler.add_job(restart_space, "interval", seconds=10800, next_run_time=datetime.now() + timedelta(hours=3)) # restarted every 3h
558
  scheduler.add_job(update_dynamic_files_wrapper, "interval", seconds=1800, next_run_time=datetime.now() + timedelta(minutes=5)) # launched every 30 minutes
559
+ scheduler.add_job(update_collections, "interval", args=(original_df.copy(),), seconds=3600, next_run_time=datetime.now() + timedelta(minutes=1))
560
  scheduler.start()
561
 
562
  demo.queue(default_concurrency_limit=40).launch()
src/tools/collections.py CHANGED
@@ -33,6 +33,7 @@ def update_collections(df: DataFrame):
33
 
34
  cur_best_models = []
35
  cur_best_scores = []
 
36
  scores_per_type = {'pretrained': 0, 'other': 0, 'language': 0}
37
 
38
  types_to_consider = [('pretrained', [ModelType.PT]), ('other', [ModelType.LA, ModelType.FT, ModelType.chat])]
@@ -50,10 +51,12 @@ def update_collections(df: DataFrame):
50
  #df = df[df[AutoEvalColumn.precision.name].isin(['bfloat16', 'float16', "?"])]
51
 
52
  ix = 0
53
- interval_scores = []
54
- interval_itens_languages = []
55
- interval_itens = []
56
  for size in intervals:
 
 
 
 
57
  numeric_interval = pd.IntervalIndex([intervals[size]])
58
  mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
59
  size_df = df.loc[mask]
@@ -95,8 +98,10 @@ def update_collections(df: DataFrame):
95
  ix += 1
96
  item_object_id = collection.items[-1].item_object_id
97
  cur_best_models.append(hf_path)
 
98
  interval_scores.append(float(score))
99
  interval_itens_languages.append(language)
 
100
  interval_itens.append(item_object_id)
101
  scores_per_type[model_type] = float(score)
102
  break
@@ -137,8 +142,10 @@ def update_collections(df: DataFrame):
137
  ix += 1
138
  item_object_id = collection.items[-1].item_object_id
139
  cur_best_models.append(hf_path)
 
140
  interval_scores.append(float(score))
141
  interval_itens_languages.append(language)
 
142
  interval_itens.append(item_object_id)
143
  scores_per_type[model_type] = float(score)
144
  break
@@ -148,14 +155,14 @@ def update_collections(df: DataFrame):
148
  # fix order:
149
  starting_idx = len(cur_best_models)
150
  k = 0
151
- for i in np.argsort(interval_scores):
152
  if i == k:
153
  continue
154
  else:
155
  try:
156
  #print(cur_best_models[i], interval_itens[i], starting_idx+k, interval_scores[i])
157
  update_collection_item(
158
- collection_slug=PATH_TO_COLLECTION, item_object_id=interval_itens[i], position=starting_idx+k
159
  )
160
  except:
161
  traceback.print_exc()
 
33
 
34
  cur_best_models = []
35
  cur_best_scores = []
36
+ cur_itens = []
37
  scores_per_type = {'pretrained': 0, 'other': 0, 'language': 0}
38
 
39
  types_to_consider = [('pretrained', [ModelType.PT]), ('other', [ModelType.LA, ModelType.FT, ModelType.chat])]
 
51
  #df = df[df[AutoEvalColumn.precision.name].isin(['bfloat16', 'float16', "?"])]
52
 
53
  ix = 0
54
+
 
 
55
  for size in intervals:
56
+ interval_scores = []
57
+ interval_itens_languages = []
58
+ interval_itens = []
59
+
60
  numeric_interval = pd.IntervalIndex([intervals[size]])
61
  mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
62
  size_df = df.loc[mask]
 
98
  ix += 1
99
  item_object_id = collection.items[-1].item_object_id
100
  cur_best_models.append(hf_path)
101
+ cur_best_scores.append(float(score))
102
  interval_scores.append(float(score))
103
  interval_itens_languages.append(language)
104
+ cur_itens.append(item_object_id)
105
  interval_itens.append(item_object_id)
106
  scores_per_type[model_type] = float(score)
107
  break
 
142
  ix += 1
143
  item_object_id = collection.items[-1].item_object_id
144
  cur_best_models.append(hf_path)
145
+ cur_best_scores.append(float(score))
146
  interval_scores.append(float(score))
147
  interval_itens_languages.append(language)
148
+ cur_itens.append(item_object_id)
149
  interval_itens.append(item_object_id)
150
  scores_per_type[model_type] = float(score)
151
  break
 
155
  # fix order:
156
  starting_idx = len(cur_best_models)
157
  k = 0
158
+ for i in np.argsort(cur_best_scores):
159
  if i == k:
160
  continue
161
  else:
162
  try:
163
  #print(cur_best_models[i], interval_itens[i], starting_idx+k, interval_scores[i])
164
  update_collection_item(
165
+ collection_slug=PATH_TO_COLLECTION, item_object_id=cur_itens[i], position=starting_idx+k
166
  )
167
  except:
168
  traceback.print_exc()