Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Commit
·
48719fa
1
Parent(s):
b2fe6a1
fix portuguese itens in collections
Browse files- app.py +2 -2
- src/tools/collections.py +12 -5
app.py
CHANGED
@@ -106,7 +106,7 @@ def init_space(full_init: bool = True):
|
|
106 |
benchmark_cols=BENCHMARK_COLS,
|
107 |
show_incomplete=SHOW_INCOMPLETE_EVALS
|
108 |
)
|
109 |
-
update_collections(original_df.copy())
|
110 |
leaderboard_df = original_df.copy()
|
111 |
|
112 |
plot_df = create_plot_df(create_scores_df(raw_data))
|
@@ -556,7 +556,7 @@ def update_dynamic_files_wrapper():
|
|
556 |
scheduler = BackgroundScheduler(daemon=True)
|
557 |
scheduler.add_job(restart_space, "interval", seconds=10800, next_run_time=datetime.now() + timedelta(hours=3)) # restarted every 3h
|
558 |
scheduler.add_job(update_dynamic_files_wrapper, "interval", seconds=1800, next_run_time=datetime.now() + timedelta(minutes=5)) # launched every 30 minutes
|
559 |
-
|
560 |
scheduler.start()
|
561 |
|
562 |
demo.queue(default_concurrency_limit=40).launch()
|
|
|
106 |
benchmark_cols=BENCHMARK_COLS,
|
107 |
show_incomplete=SHOW_INCOMPLETE_EVALS
|
108 |
)
|
109 |
+
#update_collections(original_df.copy())
|
110 |
leaderboard_df = original_df.copy()
|
111 |
|
112 |
plot_df = create_plot_df(create_scores_df(raw_data))
|
|
|
556 |
scheduler = BackgroundScheduler(daemon=True)
|
557 |
scheduler.add_job(restart_space, "interval", seconds=10800, next_run_time=datetime.now() + timedelta(hours=3)) # restarted every 3h
|
558 |
scheduler.add_job(update_dynamic_files_wrapper, "interval", seconds=1800, next_run_time=datetime.now() + timedelta(minutes=5)) # launched every 30 minutes
|
559 |
+
scheduler.add_job(update_collections, "interval", args=(original_df.copy(),), seconds=3600, next_run_time=datetime.now() + timedelta(minutes=1))
|
560 |
scheduler.start()
|
561 |
|
562 |
demo.queue(default_concurrency_limit=40).launch()
|
src/tools/collections.py
CHANGED
@@ -33,6 +33,7 @@ def update_collections(df: DataFrame):
|
|
33 |
|
34 |
cur_best_models = []
|
35 |
cur_best_scores = []
|
|
|
36 |
scores_per_type = {'pretrained': 0, 'other': 0, 'language': 0}
|
37 |
|
38 |
types_to_consider = [('pretrained', [ModelType.PT]), ('other', [ModelType.LA, ModelType.FT, ModelType.chat])]
|
@@ -50,10 +51,12 @@ def update_collections(df: DataFrame):
|
|
50 |
#df = df[df[AutoEvalColumn.precision.name].isin(['bfloat16', 'float16', "?"])]
|
51 |
|
52 |
ix = 0
|
53 |
-
|
54 |
-
interval_itens_languages = []
|
55 |
-
interval_itens = []
|
56 |
for size in intervals:
|
|
|
|
|
|
|
|
|
57 |
numeric_interval = pd.IntervalIndex([intervals[size]])
|
58 |
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
59 |
size_df = df.loc[mask]
|
@@ -95,8 +98,10 @@ def update_collections(df: DataFrame):
|
|
95 |
ix += 1
|
96 |
item_object_id = collection.items[-1].item_object_id
|
97 |
cur_best_models.append(hf_path)
|
|
|
98 |
interval_scores.append(float(score))
|
99 |
interval_itens_languages.append(language)
|
|
|
100 |
interval_itens.append(item_object_id)
|
101 |
scores_per_type[model_type] = float(score)
|
102 |
break
|
@@ -137,8 +142,10 @@ def update_collections(df: DataFrame):
|
|
137 |
ix += 1
|
138 |
item_object_id = collection.items[-1].item_object_id
|
139 |
cur_best_models.append(hf_path)
|
|
|
140 |
interval_scores.append(float(score))
|
141 |
interval_itens_languages.append(language)
|
|
|
142 |
interval_itens.append(item_object_id)
|
143 |
scores_per_type[model_type] = float(score)
|
144 |
break
|
@@ -148,14 +155,14 @@ def update_collections(df: DataFrame):
|
|
148 |
# fix order:
|
149 |
starting_idx = len(cur_best_models)
|
150 |
k = 0
|
151 |
-
for i in np.argsort(
|
152 |
if i == k:
|
153 |
continue
|
154 |
else:
|
155 |
try:
|
156 |
#print(cur_best_models[i], interval_itens[i], starting_idx+k, interval_scores[i])
|
157 |
update_collection_item(
|
158 |
-
collection_slug=PATH_TO_COLLECTION, item_object_id=
|
159 |
)
|
160 |
except:
|
161 |
traceback.print_exc()
|
|
|
33 |
|
34 |
cur_best_models = []
|
35 |
cur_best_scores = []
|
36 |
+
cur_itens = []
|
37 |
scores_per_type = {'pretrained': 0, 'other': 0, 'language': 0}
|
38 |
|
39 |
types_to_consider = [('pretrained', [ModelType.PT]), ('other', [ModelType.LA, ModelType.FT, ModelType.chat])]
|
|
|
51 |
#df = df[df[AutoEvalColumn.precision.name].isin(['bfloat16', 'float16', "?"])]
|
52 |
|
53 |
ix = 0
|
54 |
+
|
|
|
|
|
55 |
for size in intervals:
|
56 |
+
interval_scores = []
|
57 |
+
interval_itens_languages = []
|
58 |
+
interval_itens = []
|
59 |
+
|
60 |
numeric_interval = pd.IntervalIndex([intervals[size]])
|
61 |
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
62 |
size_df = df.loc[mask]
|
|
|
98 |
ix += 1
|
99 |
item_object_id = collection.items[-1].item_object_id
|
100 |
cur_best_models.append(hf_path)
|
101 |
+
cur_best_scores.append(float(score))
|
102 |
interval_scores.append(float(score))
|
103 |
interval_itens_languages.append(language)
|
104 |
+
cur_itens.append(item_object_id)
|
105 |
interval_itens.append(item_object_id)
|
106 |
scores_per_type[model_type] = float(score)
|
107 |
break
|
|
|
142 |
ix += 1
|
143 |
item_object_id = collection.items[-1].item_object_id
|
144 |
cur_best_models.append(hf_path)
|
145 |
+
cur_best_scores.append(float(score))
|
146 |
interval_scores.append(float(score))
|
147 |
interval_itens_languages.append(language)
|
148 |
+
cur_itens.append(item_object_id)
|
149 |
interval_itens.append(item_object_id)
|
150 |
scores_per_type[model_type] = float(score)
|
151 |
break
|
|
|
155 |
# fix order:
|
156 |
starting_idx = len(cur_best_models)
|
157 |
k = 0
|
158 |
+
for i in np.argsort(cur_best_scores):
|
159 |
if i == k:
|
160 |
continue
|
161 |
else:
|
162 |
try:
|
163 |
#print(cur_best_models[i], interval_itens[i], starting_idx+k, interval_scores[i])
|
164 |
update_collection_item(
|
165 |
+
collection_slug=PATH_TO_COLLECTION, item_object_id=cur_itens[i], position=starting_idx+k
|
166 |
)
|
167 |
except:
|
168 |
traceback.print_exc()
|