import os import pandas as pd from huggingface_hub import add_collection_item, delete_collection_item, get_collection, update_collection_item from huggingface_hub.utils._errors import HfHubHTTPError from pandas import DataFrame import numpy as np from src.display.utils import AutoEvalColumn, ModelType, NUMERIC_INTERVALS from src.envs import H4_TOKEN, PATH_TO_COLLECTION # Specific intervals for the collections """ intervals = { "1B": pd.Interval(0, 1.5, closed="right"), "3B": pd.Interval(2.5, 3.5, closed="neither"), "7B": pd.Interval(6, 8, closed="neither"), "13B": pd.Interval(10, 14, closed="neither"), "30B": pd.Interval(25, 35, closed="neither"), "65B": pd.Interval(60, 70, closed="neither"), } """ intervals = {k:v for k,v in NUMERIC_INTERVALS.items() if "?" not in k} def update_collections(df: DataFrame): """This function updates the Open LLM Leaderboard model collection with the latest best models for each size category and type. """ collection = get_collection(collection_slug=PATH_TO_COLLECTION, token=H4_TOKEN) params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce") cur_best_models = [] cur_best_scores = [] scores_per_type = {'pretrained': 0, 'other': 0, 'language': 0} types_to_consider = [('pretrained', [ModelType.PT]), ('other', [ModelType.LA, ModelType.FT, ModelType.chat])] for item in collection.items: try: delete_collection_item( collection_slug=PATH_TO_COLLECTION, item_object_id=item.item_object_id, token=H4_TOKEN ) except HfHubHTTPError: continue ix = 0 for size in intervals: interval_scores = [] interval_itens_languages = [] interval_itens = [] numeric_interval = pd.IntervalIndex([intervals[size]]) mask = params_column.apply(lambda x: any(numeric_interval.contains(x))) size_df = df.loc[mask] for model_type, types in types_to_consider: type_emojis = [] for type in types: if type.value.name == "": continue type_emoji = [t[0] for t in type.value.symbol] type_emojis.extend(type_emoji) filtered_df = size_df[size_df[AutoEvalColumn.model_type_symbol.name].isin(type_emojis)] filtered_df = filtered_df[filtered_df[AutoEvalColumn.average.name].astype(float) > scores_per_type[model_type]] best_models = filtered_df.sort_values(AutoEvalColumn.average.name, ascending=False) print(type_emojis, size, list(best_models[AutoEvalColumn.dummy.name])[:10]) # We add them one by one to the leaderboard for i, row in best_models.iterrows(): model = row[AutoEvalColumn.dummy.name] score = row[AutoEvalColumn.average.name] language = row[AutoEvalColumn.main_language.name] if language == 'Portuguese': note = f"Best Portuguese {type.to_str(' ')} model of around {size} on the leaderboard today! (Score: {score})" else: note = f"Best {type.to_str(' ')} model of around {size} on the leaderboard today! (Score: {score})" try: collection = add_collection_item( PATH_TO_COLLECTION, item_id=model, item_type="model", exists_ok=True, note=note, token=H4_TOKEN, ) ix += 1 item_object_id = collection.items[-1].item_object_id cur_best_models.append(model) interval_scores.append(float(score)) interval_itens_languages.append(language) interval_itens.append(item_object_id) scores_per_type[model_type] = float(score) break except HfHubHTTPError: continue if 'Portuguese' not in interval_itens_languages: language = ['Portuguese'] model_type = 'language' filtered_df = size_df[size_df[AutoEvalColumn.main_language.name].isin(language)] filtered_df = filtered_df[filtered_df[AutoEvalColumn.average.name].astype(float) > scores_per_type[model_type]] best_models = filtered_df.sort_values(AutoEvalColumn.average.name, ascending=False) print(language, size, list(best_models[AutoEvalColumn.dummy.name])[:10]) # We add them one by one to the leaderboard for i, row in best_models.iterrows(): model = row[AutoEvalColumn.dummy.name] score = row[AutoEvalColumn.average.name] language = row[AutoEvalColumn.main_language.name] if language == 'Portuguese': note = f"Best Portuguese {type.to_str(' ')} model of around {size} on the leaderboard today! (Score: {score})" else: note = f"Best {type.to_str(' ')} model of around {size} on the leaderboard today! (Score: {score})" try: collection = add_collection_item( PATH_TO_COLLECTION, item_id=model, item_type="model", exists_ok=True, note=note, token=H4_TOKEN, ) ix += 1 item_object_id = collection.items[-1].item_object_id cur_best_models.append(model) interval_scores.append(float(score)) interval_itens_languages.append(language) interval_itens.append(item_object_id) scores_per_type[model_type] = float(score) break except HfHubHTTPError: continue # fix order: starting_idx = len(cur_best_models) k = 0 for i in np.argsort(interval_scores): if i == k: continue else: try: update_collection_item( collection_slug=PATH_TO_COLLECTION, item_object_id=interval_itens[i], position=starting_idx+k ) except: pass k += 1 collection = get_collection(PATH_TO_COLLECTION, token=H4_TOKEN) for item in collection.items: if item.item_id not in cur_best_models: try: delete_collection_item( collection_slug=PATH_TO_COLLECTION, item_object_id=item.item_object_id, token=H4_TOKEN ) except HfHubHTTPError: continue