from huggingface_hub import ModelFilter, snapshot_download from huggingface_hub import ModelCard import os import json import time from collections import defaultdict from src.submission.check_validity import is_model_on_hub, check_model_card, get_model_tags from src.leaderboard.read_evals import EvalResult from src.envs import ( DYNAMIC_INFO_REPO, DYNAMIC_INFO_PATH, DYNAMIC_INFO_FILE_PATH, API, H4_TOKEN, ORIGINAL_HF_LEADERBOARD_RESULTS_REPO, ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS_PATH, GET_ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS ) from src.display.utils import ORIGINAL_TASKS def update_models(file_path, models, original_leaderboard_files=None): """ Search through all JSON files in the specified root folder and its subfolders, and update the likes key in JSON dict from value of input dict """ with open(file_path, "r") as f: model_infos = json.load(f) for model_id, data in model_infos.items(): if model_id not in models: data['still_on_hub'] = False data['likes'] = 0 data['downloads'] = 0 data['created_at'] = "" data['original_llm_scores'] = {} continue model_cfg = models[model_id] data['likes'] = model_cfg.likes data['downloads'] = model_cfg.downloads data['created_at'] = str(model_cfg.created_at) #data['params'] = get_model_size(model_cfg, data['precision']) data['license'] = model_cfg.card_data.license if model_cfg.card_data is not None else "" data['original_llm_scores'] = {} # Is the model still on the hub? model_name = model_id if model_cfg.card_data is not None and hasattr(model_cfg.card_data, "base_model") and model_cfg.card_data.base_model is not None: model_name = model_cfg.card_data.base_model # for adapters, we look at the parent model still_on_hub, _, _ = is_model_on_hub( model_name=model_name, revision=data.get("revision"), trust_remote_code=True, test_tokenizer=False, token=H4_TOKEN ) data['still_on_hub'] = still_on_hub tags = [] if still_on_hub: status, _, model_card = check_model_card(model_id) tags = get_model_tags(model_card, model_id) if original_leaderboard_files is not None and model_id in original_leaderboard_files: eval_results = {} for filepath in original_leaderboard_files[model_id]: eval_result = EvalResult.init_from_json_file(filepath, is_original=True) # Store results of same eval together eval_name = eval_result.eval_name if eval_name in eval_results.keys(): eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None}) else: eval_results[eval_name] = eval_result for eval_result in eval_results.values(): precision = eval_result.precision.value.name if len(eval_result.results) < len(ORIGINAL_TASKS): continue data['original_llm_scores'][precision] = sum([v for v in eval_result.results.values() if v is not None]) / len(ORIGINAL_TASKS) data["tags"] = tags with open(file_path, 'w') as f: json.dump(model_infos, f, indent=2) def update_dynamic_files(): """ This will only update metadata for models already linked in the repo, not add missing ones. """ snapshot_download( repo_id=DYNAMIC_INFO_REPO, local_dir=DYNAMIC_INFO_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30 ) print("UPDATE_DYNAMIC: Loaded snapshot") # Get models start = time.time() models = list(API.list_models( filter=ModelFilter(task="text-generation"), full=False, cardData=True, fetch_config=True, )) id_to_model = {model.id : model for model in models} id_to_leaderboard_files = defaultdict(list) if GET_ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS: try: print("UPDATE_DYNAMIC: Downloading Original HF Leaderboard results snapshot") snapshot_download( repo_id=ORIGINAL_HF_LEADERBOARD_RESULTS_REPO, local_dir=ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30 ) #original_leaderboard_files = [] #API.list_repo_files(ORIGINAL_HF_LEADERBOARD_RESULTS_REPO, repo_type='dataset') for dirpath,_,filenames in os.walk(ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS_PATH): for f in filenames: if not (f.startswith('results_') and f.endswith('.json')): continue filepath = os.path.join(dirpath[len(ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS_PATH)+1:], f) model_id = filepath[:filepath.find('/results_')] id_to_leaderboard_files[model_id].append(os.path.join(dirpath, f)) for model_id in id_to_leaderboard_files: id_to_leaderboard_files[model_id].sort() except Exception as e: print(f"UPDATE_DYNAMIC: Could not download original results from : {e}") id_to_leaderboard_files = None print(f"UPDATE_DYNAMIC: Downloaded list of models in {time.time() - start:.2f} seconds") start = time.time() update_models(DYNAMIC_INFO_FILE_PATH, id_to_model, id_to_leaderboard_files) print(f"UPDATE_DYNAMIC: updated in {time.time() - start:.2f} seconds") API.upload_file( path_or_fileobj=DYNAMIC_INFO_FILE_PATH, path_in_repo=DYNAMIC_INFO_FILE_PATH.split("/")[-1], repo_id=DYNAMIC_INFO_REPO, repo_type="dataset", commit_message=f"Daily request file update.", ) print(f"UPDATE_DYNAMIC: pushed to hub")