import pandas as pd import numpy as np import plotly.express as px from plotly.graph_objs import Figure from src.leaderboard.filter_models import FLAGGED_MODELS from src.display.utils import human_baseline_row as HUMAN_BASELINE, AutoEvalColumn, Tasks, Task, BENCHMARK_COLS from src.leaderboard.read_evals import EvalResult def create_scores_df(raw_data: list[EvalResult]) -> pd.DataFrame: """ Generates a DataFrame containing the maximum scores until each date. :param results_df: A DataFrame containing result information including metric scores and dates. :return: A new DataFrame containing the maximum scores until each date for every metric. """ # Step 1: Ensure 'date' is in datetime format and sort the DataFrame by it #create dataframe with EvalResult dataclass columns, even if raw_data is empty results_df = pd.DataFrame(raw_data, columns=EvalResult.__dataclass_fields__.keys()) #results_df["date"] = pd.to_datetime(results_df["date"], format="mixed", utc=True) results_df.sort_values(by="date", inplace=True) # Step 2: Initialize the scores dictionary scores = {k: [] for k in BENCHMARK_COLS + [AutoEvalColumn.average.name]} # Step 3: Iterate over the rows of the DataFrame and update the scores dictionary for task in [t.value for t in Tasks] + [Task("Average", "avg", AutoEvalColumn.average.name)]: current_max = 0 last_date = "" column = task.col_name for _, row in results_df.iterrows(): current_model = row["full_model"] if current_model in FLAGGED_MODELS: continue current_date = row["date"] if task.benchmark == "Average": current_score = np.mean(list(row["results"].values())) else: current_score = row["results"][task.benchmark] if current_score > current_max: if current_date == last_date and len(scores[column]) > 0: scores[column][-1] = {"model": current_model, "date": current_date, "score": current_score} else: scores[column].append({"model": current_model, "date": current_date, "score": current_score}) current_max = current_score last_date = current_date # Step 4: Return all dictionaries as DataFrames return {k: pd.DataFrame(v, columns=["model", "date", "score"]) for k, v in scores.items()} def create_plot_df(scores_df: dict[str: pd.DataFrame]) -> pd.DataFrame: """ Transforms the scores DataFrame into a new format suitable for plotting. :param scores_df: A DataFrame containing metric scores and dates. :return: A new DataFrame reshaped for plotting purposes. """ # Initialize the list to store DataFrames dfs = [] # Iterate over the cols and create a new DataFrame for each column for col in BENCHMARK_COLS + [AutoEvalColumn.average.name]: d = scores_df[col].reset_index(drop=True) d["task"] = col dfs.append(d) # Concatenate all the created DataFrames concat_df = pd.concat(dfs, ignore_index=True) # Sort values by 'date' concat_df.sort_values(by="date", inplace=True) concat_df.reset_index(drop=True, inplace=True) return concat_df def create_metric_plot_obj( df: pd.DataFrame, metrics: list[str], title: str ) -> Figure: """ Create a Plotly figure object with lines representing different metrics and horizontal dotted lines representing human baselines. :param df: The DataFrame containing the metric values, names, and dates. :param metrics: A list of strings representing the names of the metrics to be included in the plot. :param title: A string representing the title of the plot. :return: A Plotly figure object with lines representing metrics and horizontal dotted lines representing human baselines. """ # Filter the DataFrame based on the specified metrics df = df[df["task"].isin(metrics)] # Filter the human baselines based on the specified metrics filtered_human_baselines = {k: v for k, v in HUMAN_BASELINE.items() if k in metrics} # Create a line figure using plotly express with specified markers and custom data fig = px.line( df, x="date", y="score", color="task", markers=True, custom_data=["task", "score", "model"], title=title, ) # Update hovertemplate for better hover interaction experience fig.update_traces( hovertemplate="
".join( [ "Model Name: %{customdata[2]}", "Metric Name: %{customdata[0]}", "Date: %{x}", "Metric Value: %{y}", ] ) ) # Update the range of the y-axis fig.update_layout(yaxis_range=[0, 100]) # Create a dictionary to hold the color mapping for each metric metric_color_mapping = {} # Map each metric name to its color in the figure for trace in fig.data: metric_color_mapping[trace.name] = trace.line.color # Iterate over filtered human baselines and add horizontal lines to the figure for metric, value in filtered_human_baselines.items(): color = metric_color_mapping.get(metric, "blue") # Retrieve color from mapping; default to blue if not found location = "top left" if metric == "HellaSwag" else "bottom left" # Set annotation position # Add horizontal line with matched color and positioned annotation fig.add_hline( y=value, line_dash="dot", annotation_text=f"{metric} human baseline", annotation_position=location, annotation_font_size=10, annotation_font_color=color, line_color=color, ) return fig def create_lat_score_mem_plot_obj(leaderboard_df): copy_df = leaderboard_df.copy() copy_df = copy_df[~(copy_df[AutoEvalColumn.dummy.name].isin(["baseline", "human_baseline"]))] # plot SCORE_MEMORY_LATENCY_DATA = [ AutoEvalColumn.dummy.name, AutoEvalColumn.average.name, AutoEvalColumn.params.name, AutoEvalColumn.architecture.name, "Evaluation Time (min)" ] copy_df["LLM Average Score"] = copy_df[AutoEvalColumn.average.name] copy_df["Evaluation Time (min)"] = copy_df[AutoEvalColumn.eval_time.name] / 60 #copy_df["size"] = copy_df[AutoEvalColumn.params.name] copy_df["size"] = copy_df[AutoEvalColumn.params.name].apply(lambda x: 0.5 if 0 <= x < 0.8 else x) copy_df["size"] = copy_df["size"].apply(lambda x: 0.8 if 0.8 <= x < 2 else x) copy_df["size"] = copy_df["size"].apply(lambda x: 1.5 if 2 <= x < 5 else x) copy_df["size"] = copy_df["size"].apply(lambda x: 2.0 if 5 <= x < 10 else x) copy_df["size"] = copy_df["size"].apply(lambda x: 3.0 if 10 <= x < 20 else x) copy_df["size"] = copy_df["size"].apply(lambda x: 4.5 if 20 <= x < 40 else x) copy_df["size"] = copy_df["size"].apply(lambda x: 7.0 if x > 40 else x) fig = px.scatter( copy_df, x="Evaluation Time (min)", y="LLM Average Score", size="size", color=AutoEvalColumn.architecture.name, custom_data=SCORE_MEMORY_LATENCY_DATA, color_discrete_sequence=px.colors.qualitative.Light24, log_x=True ) fig.update_traces( hovertemplate="
".join( [f"{column}: %{{customdata[{i}]}}" for i, column in enumerate(SCORE_MEMORY_LATENCY_DATA)] ) ) fig.update_layout( title={ "text": "Eval Time vs. Score vs. #Params", "y": 0.95, "x": 0.5, "xanchor": "center", "yanchor": "top", }, xaxis_title="Time To Evaluate (min)", yaxis_title="LLM Average Score", legend_title="LLM Architecture", width=1200, height=600, ) return fig # Example Usage: # human_baselines dictionary is defined. # chart = create_metric_plot_obj(scores_df, ["ARC", "HellaSwag", "MMLU", "TruthfulQA"], human_baselines, "Graph Title")