from dataclasses import dataclass, make_dataclass from enum import Enum from typing import List import pandas as pd from yaml import safe_load from src.envs import GET_ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS def fields(raw_class): return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] @dataclass class Task: benchmark: str metric: str col_name: str baseline: float = 0.0 human_baseline: float = 0.0 few_shot: int = None limit: int = None task_list: List[str] = None link: str = None description: str = None with open('tasks_config.yaml', 'r', encoding='utf-8') as f: tasks_config = safe_load(f) Tasks = Enum('Tasks', {k: Task(**v) for k, v in tasks_config['tasks'].items()}) # These classes are for user facing column names, # to avoid having to change them all around the code # when a modif is needed @dataclass class ColumnContent: name: str type: str displayed_by_default: bool hidden: bool = False never_hidden: bool = False dummy: bool = False auto_eval_column_dict = [] # Init auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)]) auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)]) #Scores auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)]) for task in Tasks: auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)]) # Model information auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)]) auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)]) auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)]) auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", True)]) auto_eval_column_dict.append(["merged", ColumnContent, ColumnContent("Merged", "bool", False)]) auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)]) auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)]) auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)]) auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False, hidden=True)]) auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)]) auto_eval_column_dict.append(["flagged", ColumnContent, ColumnContent("Flagged", "bool", False, hidden=True)]) auto_eval_column_dict.append(["moe", ColumnContent, ColumnContent("MoE", "bool", False, hidden=True)]) auto_eval_column_dict.append(["eval_time", ColumnContent, ColumnContent("Evaluation Time (s)", "number", False)]) # Dummy column for the search bar (hidden by the custom CSS) auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("Model Name", "str", False, dummy=True)]) if GET_ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS: auto_eval_column_dict.append(["original_benchmark_average", ColumnContent, ColumnContent("🤗 Leaderboard Average", "number", False)]) # We use make dataclass to dynamically fill the scores from Tasks AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True) @dataclass(frozen=True) class EvalQueueColumn: # Queue column model = ColumnContent("model", "markdown", True) revision = ColumnContent("revision", "str", True) private = ColumnContent("private", "bool", True) precision = ColumnContent("precision", "str", True) weight_type = ColumnContent("weight_type", "str", "Original") status = ColumnContent("status", "str", True) baseline_row = { AutoEvalColumn.model.name: "

Baseline

", AutoEvalColumn.revision.name: "N/A", AutoEvalColumn.precision.name: "?", AutoEvalColumn.merged.name: False, #AutoEvalColumn.average.name: 31.0, #AutoEvalColumn.arc.name: 25.0, #AutoEvalColumn.hellaswag.name: 25.0, #AutoEvalColumn.mmlu.name: 25.0, #AutoEvalColumn.truthfulqa.name: 25.0, #AutoEvalColumn.winogrande.name: 50.0, #AutoEvalColumn.gsm8k.name: 0.21, AutoEvalColumn.dummy.name: "baseline", AutoEvalColumn.model_type.name: "", AutoEvalColumn.flagged.name: False, AutoEvalColumn.model_type_symbol.name: "?", AutoEvalColumn.architecture.name: None, AutoEvalColumn.weight_type.name: None, AutoEvalColumn.params.name: 0, AutoEvalColumn.likes.name: 0, AutoEvalColumn.license.name: "", AutoEvalColumn.still_on_hub.name: False, AutoEvalColumn.moe.name: False, AutoEvalColumn.eval_time.name: 0.0 } baseline_list = [] for task in Tasks: baseline_row[task.value.col_name] = task.value.baseline if task.value.baseline is not None: baseline_list.append(task.value.baseline) baseline_row[AutoEvalColumn.average.name] = round(sum(baseline_list) / len(baseline_list), 2) if GET_ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS: baseline_row["original_benchmark_average"] = None # Average ⬆️ human baseline is 0.897 (source: averaging human baselines below) # ARC human baseline is 0.80 (source: https://lab42.global/arc/) # HellaSwag human baseline is 0.95 (source: https://deepgram.com/learn/hellaswag-llm-benchmark-guide) # MMLU human baseline is 0.898 (source: https://openreview.net/forum?id=d7KBjmI3GmQ) # TruthfulQA human baseline is 0.94(source: https://arxiv.org/pdf/2109.07958.pdf) # Winogrande: https://leaderboard.allenai.org/winogrande/submissions/public # GSM8K: paper # Define the human baselines human_baseline_row = { AutoEvalColumn.model.name: "

Human performance

", AutoEvalColumn.revision.name: "N/A", AutoEvalColumn.precision.name: "?", #AutoEvalColumn.average.name: 92.75, AutoEvalColumn.merged.name: False, #AutoEvalColumn.arc.name: 80.0, #AutoEvalColumn.hellaswag.name: 95.0, #AutoEvalColumn.mmlu.name: 89.8, #AutoEvalColumn.truthfulqa.name: 94.0, #AutoEvalColumn.winogrande.name: 94.0, #AutoEvalColumn.gsm8k.name: 100, AutoEvalColumn.dummy.name: "human_baseline", AutoEvalColumn.model_type.name: "", AutoEvalColumn.flagged.name: False, AutoEvalColumn.model_type_symbol.name: "?", AutoEvalColumn.architecture.name: None, AutoEvalColumn.weight_type.name: None, AutoEvalColumn.params.name: 0, AutoEvalColumn.likes.name: 0, AutoEvalColumn.license.name: "", AutoEvalColumn.still_on_hub.name: False, AutoEvalColumn.moe.name: False, AutoEvalColumn.eval_time.name: 0.0 } baseline_list = [] for task in Tasks: human_baseline_row[task.value.col_name] = task.value.human_baseline if task.value.human_baseline is not None: baseline_list.append(task.value.human_baseline) human_baseline_row[AutoEvalColumn.average.name] = round(sum(baseline_list) / len(baseline_list), 2) if GET_ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS: human_baseline_row["original_benchmark_average"] = None @dataclass class ModelDetails: name: str symbol: str = "" # emoji, only for the model type class ModelType(Enum): PT = ModelDetails(name="pretrained", symbol="🟢") LA = ModelDetails(name="language adapted models (FP, FT, ...)", symbol="🆎") FT = ModelDetails(name="fine-tuned/fp on domain-specific datasets", symbol="🔶") chat = ModelDetails(name="chat models (RLHF, DPO, IFT, ...)", symbol="💬") merges = ModelDetails(name="base merges and moerges", symbol="🤝") Unknown = ModelDetails(name="", symbol="?") def to_str(self, separator=" "): return f"{self.value.symbol}{separator}{self.value.name}" @staticmethod def from_str(type): if "fine-tuned" in type or "🔶" in type: return ModelType.FT if "language" in type or "🆎" in type: return ModelType.PT if "pretrained" in type or "🟢" in type: return ModelType.PT if any([k in type for k in ["instruction-tuned", "RL-tuned", "chat", "🟦", "⭕", "💬"]]): return ModelType.chat if "merge" in type or "🤝" in type: return ModelType.merges return ModelType.Unknown class WeightType(Enum): Adapter = ModelDetails("Adapter") Original = ModelDetails("Original") Delta = ModelDetails("Delta") class Precision(Enum): float16 = ModelDetails("float16") bfloat16 = ModelDetails("bfloat16") qt_8bit = ModelDetails("8bit") qt_4bit = ModelDetails("4bit") qt_GPTQ = ModelDetails("GPTQ") Unknown = ModelDetails("?") def from_str(precision): if precision in ["torch.float16", "float16"]: return Precision.float16 if precision in ["torch.bfloat16", "bfloat16"]: return Precision.bfloat16 if precision in ["8bit"]: return Precision.qt_8bit if precision in ["4bit"]: return Precision.qt_4bit if precision in ["GPTQ", "None"]: return Precision.qt_GPTQ return Precision.Unknown # Column selection COLS = [c.name for c in fields(AutoEvalColumn)] TYPES = [c.type for c in fields(AutoEvalColumn)] EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] BENCHMARK_COLS = [t.value.col_name for t in Tasks] NUMERIC_INTERVALS = { "?": pd.Interval(-1, 0, closed="right"), "~1.5": pd.Interval(0, 2, closed="right"), "~3": pd.Interval(2, 4, closed="right"), "~7": pd.Interval(4, 9, closed="right"), "~13": pd.Interval(9, 20, closed="right"), "~35": pd.Interval(20, 45, closed="right"), "~60": pd.Interval(45, 70, closed="right"), "70+": pd.Interval(70, 10000, closed="right"), } #Original HF LEaderboard tasks and metrics ORIGINAL_TASKS = [ ("arc:challenge", "acc_norm"), ("hellaswag", "acc_norm"), ("hendrycksTest", "acc"), ("truthfulqa:mc", "mc2"), ("winogrande", "acc"), ("gsm8k", "acc") ]